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                                   V.11

           July 7, 2015       

Linear Algebra 

Translated by

Sang-Gu LEE with Jon-Lark KIM, In-Jae KIM, Namyong LEE, 
Ajit KUMAR, Phong VU, Victoria LANG, Jae Hwa LEE

 
(Based on the book written by Sang-Gu Lee with Jae Hwa Lee, Kyung-Won Kim)

 http://matrix.skku.ac.kr/2015-Album/BigBook-LinearAlgebra-2015.pdf  

http://sage.skku.edu, http://www.sagemath.org 
and  http://matrix.skku.ac.kr/LA-Lab/  

        http://www.bigbook.or.kr/ 

http://matrix.skku.ac.kr/2015-Album/BigBook-LinearAlgebra-2015.pdf
http://sage.skku.edu
http://www.sagemath.org
http://matrix.skku.ac.kr/LA-Lab
http://www.bigbook.or.kr


- 2 -

Linear Algebra with
http://matrix.skku.ac.kr/LA-Sage/ 
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    Preface

This book, ‘Linear Algebra with Sage’, has two goals. The first 
goal is to explain Linear Algebra with the help of Sage. Sage is one 
of the most popular computer algebra system(CAS). Sage is a free 
and user-friendly software. Whenever the Sage codes are possible, 
we illustrate examples with Sage codes. The second goal is to make 

the book accessible to everyone in the world freely. Therefore, the pdf file of this 
book is free to use in class or in person. For commercial use, please contact us. 

Linear Algebra is regarded as 
one of the most important 
mathematical subjects because it 

is used not only in natural sciences and engineering applications but also in 
humanities and social sciences. Nowadays, Linear Algebra is studied most actively 
in the 21st century. 

One of the roles of mathematics in society is to suggest a possible solution by 
modeling a practical problem as a mathematical problem, by solving it with the 
idea of a system of linear equations, and by interpreting the solution in the setting 
of the original problem. The first computer is also based on the linear process. 
The study and applications of Linear Algebra grew incredibly in the later part of 
the 20th century. 

It is interesting to note that Sylvester and Cayley, inventors of 
matrices, and Babbage, father of the computer, were 
mathematicians in the 19th century from United Kingdom. Since 
then, the study of matrix theory has progressed and contributed to 

the development of physics by the appearance of infinite dimensions and tensors. 

Matrix theory in the United States of America was neglected from 
the European mathematical society before the Second World War. 
After that, because the modern computers were built and the 
numerical power of matrices became very useful, the matrix 

theory was developed well in the United Sates in the 20th century. The United 
States has grown as a unique super power in both theories and experiments of 
sciences.
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    How to use Lab  https://www.youtube.com/watch?v=V0xJvW-YjWs 

[CAS-Geogebra] http://www.geogebratube.org/student/b121550 

https://www.youtube.com/watch?v=V0xJvW-YjWs
http://www.geogebratube.org/student/b121550
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[CAS-Sage] http://matrix.skku.ac.kr/knou-knowls/Sag-Ref.htm  

http://matrix.skku.ac.kr/knou-knowls/Sag-Ref.htm
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Vectors

1
1.1 Vectors in n-space
1.2 Inner product and Orthogonality
1.3 Vector equations of lines and planes
1.4 Excercise

Linear algebra is the branch of mathematics 
concerning vectors and mappings. Linear algebra is 
central to both pure and applied mathematics. 
Combined with calculus, linear algebra facilitates the 
solution of linear systems of differential equations. 
Techniques from linear algebra are also used in 
analytic geometry, engineering, physics, natural 
sciences, computer science, computer animation, and the social sciences 
(particularly in economics). A geometric quantity described by a magnitude and a 
direction is called a vector. In this chapter, we begin with studying basic 
properties of vectors starting from 3-dimensional vectors and extending these 
properties to -dimensional vectors. We will also discuss the notion of the dot 
product (or inner product) of vectors and vector equations of lines and planes.

Introduction :  http://youtu.be/Mxp1e2Zzg-A  

Chapter

http://youtu.be/Mxp1e2Zzg-A
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1.1  Reference video: http://youtu.be/aeLVQoPQMpE  http://youtu.be/85kGK6bJLns 

 Practice site: http://matrix.skku.ac.kr/knou-knowls/CLA-Week-1-Sec-1-1.html 

*Vectors in -space

Among the physical quantities we use and encounter in everyday life, 
scalar (e.g. length, area, mass, temperature, etc.) is a quantity that can 
be completely described by a single real number. A vector (e.g. force, 
velocity, change in position, etc.) is a geometric quantity described by a 
magnitude and a direction.    

 Scalar: length, area, mass, temperature- a one-dimensional physical quantity, 
i.e. one that can be described by a single real number. 
 
 Vector : velocity, change in position, force - a geometric quantity described by a 

magnitude and a direction.

 A vector can be sketched as a directed line segment; in 2-and 3-dimensional 
space, vectors are often drawn as arrows.

   

                     (terminal point)

            x

  (initial point)

       Figure 1 
      

 A vector with the same initial and terminal points with magnitude 0 is called the 
zero (or null) vector. (Since its magnitude is 0, it does not have a specific 
direction).

 In physics, vectors provide a useful way to express velocity, acceleration, force, 
and the laws of motion. A force vector can be broken down into mutually 
perpendicular component vectors. An electric field can be visualized by field 
vectors, which indicate both the magnitude and direction of the field at every 
point in space. Vectors have a wide variety of applications in the social 
sciences, such as population dynamics and economics.

http://youtu.be/aeLVQoPQMpE
http://youtu.be/85kGK6bJLns
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-1-Sec-1-1.html
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Figure 2

 From now on, unless noted otherwise, we will restrict scalars to real numbers - 
that is, if  is a scalar, ∈ℝ . 

   

Definition  [Vector Addition and Scalar Multiplication]

For any two vectors x, y, and scalar , the sum of x  and y, x y,  
and the scalar multiple of x  by , x, are defined as follows.

(1) The sum of x  and y is found by placing x  and y tail-to-tail to form 
two adjacent sides of a parallelogram.  The diagonal of this 
parallelogram is x y. This is called the Parallelogram Law. (See Figure 
3.) 

(2) The scalar multiple of x  by a scalar , is a vector with magntitude 
 times the magnitude of x and with the same direction as x  if 
  , and is opposite to x  if   . (See Figure 4.) If  is , x  is the 
zero vector.

     y         x y 
       
           x

Figure 3  

                                 
 x      

 x
  x       x       x    

        Figure 4

 In the real coordinate plane ℝ       ∈ℝ, the initial and terminal 
points of every vector determine its the magnitude and direction.  If vectors 
have the same magnitude and direction, even if they are in different positions, 
we regard these vectors as equivalent.
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Example 1 For  ,    ,    ,  ,     ,     ∈ℝ , 
express the vectors  ,  ,   in component form.

Solution    , 

         , 

       

          

   

Definition  
An ordered pair of real numbers    is called a vector (in ℝ ) 
and can be written as

   x    or x 



 





.

Here,  ,   are called the components of x.

   

 Definition   Equivalence

 Two vectors x y∈ℝ , x 



 





 and y




 





 with    ,    , then 

we say that x  and y are equivalent (or equal) and we write x  y .

 [Remark] The case when the initial point is not at the origin.
   A directed line from the point    to the point    is a vector with 

the following components:   ′       .  The initial point of the 
vector     is at the origin   and the terminal point is   .  

                                            

                       ′
Figure 5
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         and   are equivalent.

Sage sol. Copy the following code into http://sage.skku.edu
                or  http://mathlab.knou.ac.kr:8080/ to practice.
                                                                           
o=vector([0, 0])    #creates a vector, x=vector([component  , component  ])
p1=vector([0, -4])
p2=vector([-3, 1])
q=vector([2, 3])
q1=vector([2, -1])
q2=vector([-1, 4])
print "vector OQ=", q-o              # subtract
print "vector P1Q1=", q1-p1          # subtract 
print "vector P2Q2=", q2-p2          # subtract 
print "vector OQ = vector P1Q1= vector P2Q2"
                                                                          
vector OQ= (2, 3)
vector P1Q1= (2, 3)
vector P2Q2= (2, 3)
vector vector OQ = P1Q1= vector P2Q2                                ■

   

Definition  

For any two vectors x 



 





, y




 





 in ℝ  and scalar , the sum of 

x  and y, x y,  and the scalar multiple of x  by , x, are defined 
component-wise as follows.

(i) x y



 


  

  
          (ii) x 




 






In ℝ , the zero vector is a vector where all its components are equal 
to 0 (its initial point is taken to be the origin). Then, for an arbitrary 
x  in   , it is clear that

x   x, x x   .

Here, taking  x  x, we call  x  the negative vector or additive 
inverse of x.

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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 [Remark]   Computer Simulations

  [Scalar multiplication] http://matrix.skku.ac.kr/2012-album/2.html 
  [Vector addition] http://matrix.skku.ac.kr/2012-album/3.html

  

  

Example 2 For vectors x 


 





, y



 


 


 in ℝ  , find x y, x y, and  x.

Ÿ http://matrix.skku.ac.kr/RPG_English/1-VT-sum-multi.html 

Sage sol. Copy the following code into http://sage.skku.edu
                or  http://mathlab.knou.ac.kr:8080/ to practice.
                                                                           
x=vector([1, 2])    #creates a vector, x=vector([component  , component  ])
y=vector([-2, 4])
print "x+y=", x+y              # adds vectors
print "x-y=", x-y              # subtract vectors
print "-2*x=", -2*x        # multiplies vectors by scalar, (you must       
                                 include '*' when multiplying)
                                                                          
x+y=(-1, 6)
x-y=(3, -2)
-2*x=(-2, -4)                                                           ■

http://matrix.skku.ac.kr/2012-album/2.html
http://matrix.skku.ac.kr/2012-album/3.html
http://matrix.skku.ac.kr/RPG_English/1-VT-sum-multi.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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 In ℝ         ∈ℝ, we define vectors as follows.

   

Definition 

A 3-tuple of real numbers      is called a vector (in ℝ ) and 
can be written as

           x     














  × 

.  

 Here,  ,  ,   are called the components of x.

   

 

Definition  [Equivalence or Equality]

Two vectors xy∈  , x 

















and y















with    ,    ,    , 

are said to be equivalent (or equal) and we write x  y .

   

 [Remark]    The case when the initial point is the origin.

  A directed line from the pont     to the point     is a vector 
with the following components:             

 ′ .
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Figure 6

Example 3 For     ,     ,   ,     ,     ∈ℝ , 
express the vectors  ,  ,   in component form.

Solution

   , 

            , 



            

and   are equivalent.  

Sage sol. Copy the following code into http://sage.skku.edu
                or  http://mathlab.knou.ac.kr:8080/ to practice.
                                                                           
o=vector([0, 0, 0])    #creates a vector
p1=vector([0, -4, 2])
p2=vector([-3, 1, 0])
q=vector([2, 3, 4])
q1=vector([2, -1, 6])
q2=vector([-1, 4, 4])
print "vector OQ=", q-o              # subtract
print "vector P1Q1=", q1-p1          # subtract 
print "vector P2Q2=", q2-p2          # subtract 
print "vector OQ = vector P1Q1= vector P2Q2"
                                                                          
vector OQ= (2, 3, 4)
vector P1Q1= (2, 3, 4)
vector P2Q2= (2, 3, 4)
vector OQ = vector P1Q1= vector P2Q2                                ■

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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 Definition  

For any two vectors 

x 

















, y















in ℝ  and scalar , the sum of x  and y, x y,  and the scalar 
multiple of x by , x, are defined component-wise as follows:

(i) x y











  
  
  

          (ii) x 

















.

In ℝ , the zero vector is a vector where all its components are equal 
to 0 (its initial point is taken to be the origin). Then, for an arbitrary 
x  in ℝ , it is clear that

x   x, x x   .

Here, taking  x  x, we call  x, the negative vector of x.

   
 The Euclidean spaces ℝ  and ℝ  can be generalized to -dimensional 
Euclidean space ℝ  as follows:

ℝ    …      ∈ ℝ     …   
 ℝ  is also called -dimensional space and elements of ℝ  are called
 -dimensional vectors. (We shall formally define vector space later.)

 Definition 
An ordered n-tuple of real numbers   …    is called a 

-dimensional vector and can be written as

x   …     












⋮
  × 

Here, real numbers  ,  , … ,   are called the components of x.
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 Definition  [Equivalence or Equality]

For vectors xy ∈ℝ , 

x 













⋮


, y












⋮


if    (    … ) then we say x  and y are equivalent (or equal) 
and we write x  y .

  Definition  
For any two vectors 

x 













⋮


, y












⋮


in ℝ  and scalar , the sum of x  and y, x y,  and the scalar 
multiple of x by , x, are defined component-wise as follows:

(i) x y











 
 ⋮
 

          (ii) x 













⋮


.

In ℝ , the zero vector is a vector where all its components are equal 
to 0 (its initial point is taken to be the origin). Then, for an arbitrary 
x  in ℝ , it is clear that

x   x, x x   .

Here, taking  x  x, we call  x, the negative vector of x.
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Example 4
 Find x y, x y,  x  when x 














 


 and y











 




 in ℝ .

Ÿ http://matrix.skku.ac.kr/RPG_English/1-VT-sum-multi-3.html 
Solution

x y                 ,
x y                ,
 x                                             □
   

Sage Copy the following code into http://sage.skku.edu to practice.
                                                                           
x=vector([1, 2, -3, 4])  
y=vector([-2, 4, 1, 0])           
print "x+y=", x+y                # adds vectors
print "x-y=", x-y                # subtracts vectors
print "-2*x=", -2*x
                                                                      
x+y=(-1, 6, -2, 4)
x-y=(3, -2, -4, 4)
-2*x=(-2, -4, 6, -8)                                                 ■

   

Theorem  1.1.1
If x, y, z  are vectors in ∈ ℝ  and  and  are scalars, then

(1) x y y x  
(2) x y z  xy z   
(3) x   x   x   
(4) x  x    x x   
(5) x y  xy  
(6)  x xx   
(7) x x    
(8) x x

The proof of above theorem is simple and follows from properties of addition and 
multiplication of real numbers. 

http://matrix.skku.ac.kr/RPG_English/1-VT-sum-multi-3.html
http://sage.skku.edu
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Theorem  1.1.2
If x  is a vector in ∈ ℝ  and  is a scalar, then

(1)  x     
(2)       
(3)   x   x

   

   

 Definition

 For vectors v v …v in ℝ  and scalars   … ,  

x v  v ⋯ v

 is called a linear combination of v v …v.

Example 5
Find  x  y  z , when x 














 


, y











 




 and z 













 



in ℝ .

Ÿ http://matrix.skku.ac.kr/RPG_English/1-VT-sum-multi-3.html 
Solution

 x  y  z                    
Sage Copy the following code into http://sage.skku.edu or

             http://mathlab.knou.ac.kr:8080/ to practice.
                                                                           
x=vector([1, 2, -3, 4])  
y=vector([-2, 4, 1, 0]) 
z=vector([5, -2, 3, -7])
print "2*x-3*y+z=", 2*x-3*y+z                  # linear combination 
                                                                          
2*x-3*y+z=(13, -10, -6, 1)                                            ■

http://matrix.skku.ac.kr/RPG_English/1-VT-sum-multi-3.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 6 The above Example 5  can also be done in Sage as follows. First, we build 
the relevant vectors and the command for a linear combination of many 
vectors. Then, we can combine all into one line, as follows.              

Sage Copy the following code into http://sage.skku.edu or
             http://mathlab.knou.ac.kr:8080/ to practice.
                                                                           
x=vector(QQ,  [1, 2, -3, 4])  # computations with quotient numbers in Q
y=vector(QQ,  [-2, 4, 1, 0]) 
z=vector(QQ,  [5, -2, 3, -7])
print "2*x-3*y+z=", 2*x-3*y+z                  # linear combination 
vectors = [x, y, z]
scalars = [2, -3, 1]
multiples = [scalars[i]*vectors[i] for i in range(3)]
print "a*x+b*y+c*z=", sum(multiples)           # linear combination 
                                                                          
2*x-3*y+z = (13, -10, -6, 1)  
a*x+b*y+c*z = (13, -10, -6, 1)                             ■

(Comment : We can create an applet to generate a random vectors and scalars 
and find the linear combination, as well.)

 Rob Beezer's Linear Combination Lab: http://linear.ups.edu/html/section-LC.html

 <Sang-Seol LEE, Father of Korean Mathematics education>
    http://www.youtube.com/watch?feature=player_embedded&v=NbuRcvLlJOw 

 

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
http://linear.ups.edu/html/section-LC.html
http://www.youtube.com/watch?feature=player_embedded&v=NbuRcvLlJOw
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Example 1 For the vectors  x     , y      in  , we have the 
following. 

Ÿ http://matrix.skku.ac.kr/RPG_English/1-B1-norm-distance.html 

Solution

∥x∥             

∥y∥        

        

1.2  Reference videos: http://youtu.be/g55dfkmlTHE , http://youtu.be/CbfJYPCkbm8  

 Practice site: http://matrix.skku.ac.kr/knou-knowls/CLA-Week-1-Sec-1-1.html 

Inner product and Orthogonality

In this section, we will discuss the concepts of vector length, distance, 
and how to calculate the angle between two vectors, as well as vector 
parallelism and orthogonality in ℝ.

   

Definition

Given a vector x   …   in ℝ

∥x∥ 
 

 ⋯


is called the norm (or length or magnitude) of x, and is denoted by 
the symbol x  or x  (read as norm x ).

In the above definition, ∥x∥ is the distance from the initial point of 
the vector x  to its terminal point; equivalently, it is the distance from 
the origin to the point   …  . Therefore, for any two vectors 
x   …  , y   …   in   , ∥x y∥  is the distance 
between the two points   …   and   …  . That is,

∥x y∥    
     

 ⋯    
 .

http://youtu.be/g55dfkmlTHE
http://youtu.be/CbfJYPCkbm8
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-1-Sec-1-1.html
http://matrix.skku.ac.kr/RPG_English/1-B1-norm-distance.html
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∥x y∥              

           .                                                       □
    

Sage Copy the following code into http://sage.skku.edu to practice. 
                                                                           
x=vector([2, -1, 3, 2])            
y=vector([3, 2, 1, -4])
print x.norm()                 # calculate the norm of x
print y.norm()                 # calculate the norm of y
print (x-y).norm()             # calculate distance
                                                                          
3*sqrt(2)                          # sqrt(2) means 
sqrt(30)
5*sqrt(2)                                                                ■

   
  

   

  Definition

For vectors  x   …  , y   …   in ℝ , 

  ⋯

is called the dot product (or Euclidean inner product) of x  and y  
and is denoted by x ∙ y. That is,

x ∙ y  ⋯

 Note that x ∙ x ∥x∥

http://sage.skku.edu
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Example 2 Using the vectors x  and y in Example 1 , calculate x ∙ y.

Solution

x ∙ y  ·    ·   ·   ·         .                 □

Sage Copy the following code into http://sage.skku.edu to practice.
                                                                           
x=vector([2, -1, 3, 2])            
y=vector([3, 2, 1, -4])
print x.inner_product(y)         # find the dot product
                                                                          
-1                                                                      ■

   

Theorem  1.2.1
If x , y, z  are vectors in ℝ  and  is a scalar, then we have the 
following:

(1) x ∙ x ≥ , 
(2) x ∙ x     ⇔   x  

(3) x ∙ y y ∙ x
(4) x ∙ y  x ∙ z  y ∙ z
(5) x ∙ y  x ∙ y  x ∙ y 

  
 The proof of all the facts in above theorem are easy and users are encouraged 
to complete the same.

   

Theorem  1.2.2 [The Cauchy–Schwarz inequality]
For any two vectors x , y in ℝ , 

x ∙ y ≤ ∥x∥∥y∥ .

Equality holds if and only if x  and y are scalar multiples of one 
another (i.e. x y for some scalar ).

http://sage.skku.edu


- 23 -

 The Cauchy-Schwarz inequality is one of the most important inequalities in 
vector spaces. We will give a full details of this proof in section 9.2. This 

inequality implies  ∥x∥∥y∥
x ∙ y ≤  and   ≤∥x∥∥y∥

x ∙ y ≤  and which gives  

cos  ∥x∥∥y∥
x ∙ y  where cos ∈   . This is a more generalized concept of 

the angle between two vectors, since these vectors can be matrices, polynomials, 
functions, etc.

   

  Definition

For vectors  x   …  , y   …   in ℝ

x ∙ y  ∥x∥∥y∥cos  ,  ≤  ≤ ,

where   is called the angle between x  and y.

[Remark] Parallelism and Orthogonality

  If x ∙ y  , then x  is orthogonal to y. 
  If x  is a scalar multiple of y (i.e.,  x y for some scalar ), then x  is parallel 
to y.

   

Definition

A vector u  in    with a norm of 1, that is,

∥u∥ 

is called a unit vector. Additionally, if  x  and y are mutually 
orthogonal unit vectors, x  and y are called orthonormal vectors.
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Figure 7

     If x  is a non zero vector, then u∥x∥
x , hence we have ∥u∥ ∥∥x∥

x ∥
 ∥x∥

∥x∥
 .

Example 3  For two vectors x  and y   in ℝ , establish 
orthogonality.

Ÿ http://matrix.skku.ac.kr/RPG_English/1-TF-inner-product.html 

Solution

x∙ y  ·    ·   ·   ·              □

Sage Copy the following code into http://sage.skku.edu to practice.
                                                                           
x=vector([1, 0, 1, 1])            
y=vector([-1, 0, 0, 1])
print x.inner_product(y)    
                                                                          
0   #orthogonal                                                        ■

http://matrix.skku.ac.kr/RPG_English/1-TF-inner-product.html
http://sage.skku.edu
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Theorem  1.2.3 [Triangle Inequality for Vectors]
For any two vectors x , y in ℝ . we have

∥x y∥ ≤ ∥x∥∥y∥

Equality holds if and only if x  and y are non-negative scalar multiples 
of one another (i.e. x   y for some scalar  ≥ ).

   

Figure 8

Geometrically, the sum of any length of any two sides of a triangle is greater than 
or equal to the third side. Look at the above figure.

Example 4 Using the vectors x  and y from Example 1 , verify that the triangle 
inequality holds. 

Solution

x     , y     , ∥x∥      ,
∥y∥     and 
x y                . Hence
∥x y∥     .
So, x y       x   y .                           ■
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  Definition

For an arbitrary, non-zero vector x ≠   ∈ ℝ

u∥x∥
 x

is a unit vector. In  ℝ , unit vectors of the form

e  …, e  …, … , e  …

are called standard unit vectors or coordinate vectors.

 If x   …   is an arbitrary vector in ℝ , using standard unit vectors, 
we can express x  as follows: 

x e e ⋯e .

 In ℝ  and ℝ , conventionally, the unit vectors e , e , e  along the rectangular 
coordinate axes are represented by  i , j , k.

           

                             x  i j ,  x    ∈ ℝ

                             x  i j k,  x     ∈ ℝ

Figure 9

<Figure 9 comes from Contemporary Linear algebra (3rd Edition) by Sang-Gu Lee,
 ISBN 978-89-6105-195-8, Kyungmoon Books(2009)>
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1.3  Reference video: http://youtu.be/4UGACWyWOgA http://youtu.be/YB976T1w0kE 

 Practice site: http://matrix.skku.ac.kr/knou-knowls/CLA-Week-1-Sec-1-3.html 

Equations of Lines and Planes

In this section, we will derive vector equations of lines and planes in 
ℝ , and we will examine shortest distance problems related to these 
equations.

Point-Slope (Direction Vector) Equation of a Line

In ℝ , an equation of a line can be uniquely determined when a slope and a 
specified point on the line are given. If a line passes through the point 
     and is parallel to a vector v  i j k, then the vector   is 
parallel to v, where     is any point on the line. 

That is, the line is a set of all points     that satisfies the following equation:

                         v ∈ℝ   

Suppose   p  and   p. Then   p  p . Hence we have p  p  v.  

That is, p  p  v. 

   Vector equations: p p  v, (p , p 
 )

 Parametric equations: In terms of coordinates, the above equations can be 
written as 

http://youtu.be/4UGACWyWOgA
http://youtu.be/YB976T1w0kE
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-1-Sec-1-3.html
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                     ,     ,        (∞   ∞ ).

  Symmetric equations: From the above parametric equations, it is easy to see 
that 

                  




 


 
        (  ≠ ).

Example 1  Find vector, parametric and symmetric equations of the line that passes 
through the point     and is parallel to the vector 
v   .

Solution

(1) The vector equation of the line is give by 
            i  j  k  i  j   k    i   j   k .

(2) The parametric equation is given by 








     
     
     

 (∞    ∞ ).

(3) The symmetric equation is given by 

 
 

 
 

  .        ■

Example 2 Find parametric equations for the line that passes through the points 
    and    .

Solution Two points     and     with position vectors r  
and r  forms a vector 

  v  r  r             

and the vector equation r  r  r  r  can be written  as 

             

                          , ∈ℝ . 

 Thus, the parametric equations are:

   ,    ,       (∞    ∞ )            ■
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Figure 10

Figure 11

 Point-Normal Equation of Planes

 A plane in ℝ  can be uniquely obtained by specifying a point      in the 
plane and a nonzero vector n   that is perpendicular to the plane. The 
vector n  is called the normal vector to the plane. If     is any point in this 
plane, then the   r  r  is orthogonal to n . 
Hence  by the property of the dot (inner) product.

n∙     ∙         

From this, we have

            

where ,  and  are not all zero. 
This is called the point-normal equation of the plane through      with 

normal n   . The above equation can be simplified to
           .

 
Vector Equation of Planes

 Vector equations: A plane  in ℝ  can be uniquely obtained by passing 
through a point x      and two nonzero vectors v  and v   in ℝ  that 
are not scalar multiples of one another. 

     Let x      be any point on , Then x  x  can be expressed as a 
linear combinations of v  and v . Look at the Figure 11.     

       x  x  v  v     or  
       x  x  v  v   (∞    ∞)
         where   and  , called parameters, are in ℝ .

This is called a vector equation of the plane.

 Parametric equations: Let x    be any point in the plane through 
x     that is parallel to the vectors v     and v    . 
Then, we can express this in component form as
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 or
     
      
      

  ∈ ℝ 

These are called parametric equations of the plane.

Example 3

Find vector and parametric equations of the plane that passes through 
the three points:   ,  , and .

Ÿ http://matrix.skku.ac.kr/RPG_English/1-BN-11.html 

Solution Let x     , x     , x     , and x    . 
Then we have two vectors that parallel to the plane as

x  x       , x  x       .

Then, from our above definitions, we have

        x           ,           
which is a vector equation of the plane.

If we further simplify the above expression, we have

                         .
In particular,         ,         ,       .      
                    is the parametric equations of the plane.          ■

http://matrix.skku.ac.kr/RPG_English/1-BN-11.html
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[Remark] Computer Simulation (A plane containing three points)

Ÿ  http://matrix.skku.ac.kr/2012-LAwithSage/interact/1/vec8.html

                             

Vector Projection and Components

 Consider two vectors x  and y with the same initial point  , represented by 
x  and y . Let   be the foot of the perpendicular from   to the line 
containing  . Then   is called the vector projection of y onto x  and is 
denoted by proj xy .

Here, the vector w  is called the component of y along x (or the scalar 
projection of y onto x). Therefore, y can be written as  y p w.

 

               
Note that p is parallel to x,  hence p   x  for some scalar . Now y p  is 
orthogonal to x. Hence  x⋅ y p   . This implies    x⋅ yx⋅ x.  This gives 
the following results:

http://matrix.skku.ac.kr/2012-LAwithSage/interact/1/vec8.html
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[Remark] Computer Simulation (Projection)

Ÿ http://matrix.skku.ac.kr/2012-LAwithSage/interact/1/vec3.html 

     

   

Theorem  1.3.1 [Projection]
For vectors x ≠ , y in ℝ , we have the following: 

(1) proj x y   x x ∙ x
y ∙ x x

(2)  ∥proj xy∥∥x∥
y∙ x  . 

Example 4 For vectors x  , y  , find proj xy (the vector projection 
of y onto x) and the component of y along x. 

Solution

Since y⋅ x  , we have

proj x y x
y⋅ x  x 


      


  


 
 

w  y  proj x y       


  


 
   


 


  

           □  

http://matrix.skku.ac.kr/2012-LAwithSage/interact/1/vec3.html
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Sage  Copy the following code into http://sage.skku.edu to practice.
                                                                           
a=vector([2, -1, 3])            
b=vector([4, -1, 2])
ab=a.inner_product(b)
aa=a.inner_product(a)
p=ab/aa*a;w=b-p           
print "p=", p
print "w=", w 
                                                                          
p= (15/7, -15/14, 45/14)
w= (13/7, 1/14, -17/14)                                                 ■

   

Theorem  1.3.2 [Distance Between a Point and a Plane]
For a point    and a plane         , the distance 
  from the point to the plane is given by

     
       .

Figure 12
   

Note that the distance of the point   from the orthogonal projection of the vector 
v        onto the plane       . This distance is same as the 
orthogonal projection of the vector       onto the normal vector n       
to the plane. See the Figure 12. It is as easy exercise to verify that the orthogonal 
projection of v  onto n  is given by the formula   above.

http://sage.skku.edu
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Example 5 Find the distance   from the point     to the plane 
      .

Ÿ http://matrix.skku.ac.kr/RPG_English/1-B1-point-plane-distance.html 

Solution

p  proj nv n n⋅ n
v⋅ n n  

Here, n     , v     , and   , so 

  p   proj nv       
        




 


               □

Sage Copy the following code into http://sage.skku.edu to practice.
                                                                           
n=vector([1, 3, -2]) 
v=vector([3, -1, 2]);d=-6
vn=v.inner_product(n)
nn=n.norm()
Dist=abs(vn+d)/nn
print Dist
                                                                          

5/7*sqrt(14)         # 


 

                                    ■

[2014 Seoul International Congress of Mathematicians] http://www.icm2014.org/kr 

http://matrix.skku.ac.kr/RPG_English/1-B1-point-plane-distance.html
http://sage.skku.edu
http://www.icm2014.org/kr
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Chapter 1    Exercises

Ÿ http://matrix.skku.ac.kr/LA-Lab/index.htm 
Ÿ http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm 

Problem 1  For points           , find the vector  .
               

Problem 2 What is the initial point of the vector x    with terminal point  
    ?

Problem 3  For vectors u      , v      , and
w        , compute the following:

 u w v u

Problem 4  Using the same u v w from above, find the vector x  that 
satisfies the following:

u v x xw

Problem 5  For vectors x      y      calculate cos , where   is
the angle between x and y. 

Problem 6  Find the distance between the two points      and 
     .

http://matrix.skku.ac.kr/LA-Lab/index.htm
http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm
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a=vector([2, -1, 3])            
b=vector([4, -1, 2]) 
ab=a.inner_product(b) 
aa=a.inner_product(a) 
p=ab/aa*a;w=b-p           
print "p=", p
print "w=", w
p= (15/7, -15/14, 45/14)
w= (13/7, 1/14, -17/14)                                                     ■

Problem 7 For vectors x     , y      , find the real number 
that such that x⋅ y .

Problem 8  Find a vector equation of the line between the two points 
     and     .

Problem 9  Find a normal vector perpendicular to the plane      .

Problem 10  [Projection] For x     and y    , find the scalar projection and 
vector projection of y onto x .

Solution  proj xyx⋅ x
y⋅ x x  


     


  


 




       w y  proj xy     


  


 


  


 


  




Sage : 

Problem P1  [Discussion] Vectors with the same magnitude and direction are 
considered to be equivalent. However, in a vector space,  discuss the relationship
between vectors with the same slope but expressed with different equations. 

Problem P2  [Discussion]  For vectors v  

 


 

  and v  

 


  

 , check 

if v  and v  are  orthonormal vectors, and find a third vector v  such that 
v v v  are all orthonormal to one another.
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Solution    v  




  


  


  , v   




  


   


  

          v∙ v 

 


 


      =>  v  and v  are orthonormal.

Let v    such that  v        ,  v∙ v 


 


 


  , 

v∙ v 

 


 


  .    =>    

 ,   
 ,   



This shows  v 

  


  

                                            ■

 [Digital Library of Math Textbooks in 60’s at SKKU]
http://matrix.skku.ac.kr/2012-e-Books/index.htm 
<1884~1910  Math books written by Korean authors>

 http://www.hpm2012.org/Proceeding/Exhibition/E2.pdf 

http://matrix.skku.ac.kr/2012-e-Books/index.htm
http://www.hpm2012.org/Proceeding/Exhibition/E2.pdf
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Linear system of equations

2
2.1 Linear system of equations
2.2 Gaussian elimination and Gauss-Jordan elimination
2.3 Exercise

A system of linear equations and its 
solution is one of the most important 
problems in Linear Algebra. A linear system 
with thousands of variables occurs in 
natural and social sciences, engineering, as 
well as traffic problems, weather forecasting, 
decision-making, etc. Even differential 
equations concerning derivatives such as 
velocity and acceleration can be solved by 
transforming them into a linear system. 
  In Linear Algebra, a solution of a linear 
system is obtained by Gauss elimination 
method or with determinants. In Chapter 2, 
we consider a geometric meaning of the 
solution of a linear system and its solution, 
and investigate some applications of a linear 
system. 

Chapter
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Definition  [Linear system of equations]
In general, a set of  linear equations with unknowns   …   

                

   ⋯   

   ⋯   

⋮
   ⋯   

 (1)

is called a system of linear equations. If constants   … are all 
zeroes, it is called a homogeneous system of linear equations.

2.1  Reference video: http://youtu.be/CiLn1F2pmvY, http://youtu.be/AAUQvdjQ-qk 

 Practice site:  http://matrix.skku.ac.kr/knou-knowls/CLA-Week-2-Sec-2-1.html  

Linear system of equations

The theory of linear systems is the basis and a fundamental part of 
linear algebra, a subject which is used in most parts of modern 
mathematics. Computational algorithms for finding the solutions are an 
important part of numerical linear algebra, and play a prominent role in 
engineering, physics, chemistry, computer science, and economics. In 
this section, we study the process of finding solutions of linear system 
of equations and its geometric meanings. 

    

Definition  [Linear equations]
Let   and   …   be real numbers. A linear equation with unknowns 
…  is of the following form: 

  ⋯  

In other words, a linear equation consists of variables of degree 1 and a 
constant.

Example 1 Equations       ,         can be written as 
    ,       and they are linear. But  
         ,   sin    are not linear.         

   

    

http://youtu.be/CiLn1F2pmvY
http://youtu.be/AAUQvdjQ-qk
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-2-Sec-2-1.html
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 [Remark]  Solution (linear system with two unknowns)

 In general, a given linear system satisfies one and only of the following.
   (1) a unique solution
                        (2) infinitely many solutions 
                                                       (3) no solution 

          

    

             
     

              
     

          

  

 

    

Definition  [Solutions of a linear system]

Suppose that unknowns   …   in a linear system are substituted 
by   …   respectively and each equation is satisfied. Then 
  …   is called a solution of a linear system. For example, given a 
linear system 

      

     
        (2)

One can substitute     as    , respectively, and it satisfies 
equation (2). Hence     is a solution. In general, if there is a 
solution of a linear system, it is called consistent and is called 
inconsistent otherwise.

 The set of all solutions of a linear system is called a solution set. Two linear 
systems with the same solution set are called equivalent. 
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 [Remark] Computer simulation

  [Linear system of equations] http://www.geogebratube.org/student/m9704

 [Remark] Linear algebra with Geogebra:

http://www.geogebratube.org/student/b121550 

Remark: (i) If there is one linear equation in three variables then it has infinitely 
many solutions. (ii) If there are two linear equations in three variables then, it 
either it has no solution (when the two planes are parallel) or it has infinitely 
many solutions which is the points of line of intersection of the two planes. (iii) In 
case of three linear equations in three variables, all possibilities can occur.

http://www.geogebratube.org/student/m9704
http://www.geogebratube.org/student/b121550
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Example 2 Describe all possible solution sets in    of a linear system with three 
equations and three unknowns.

Solution  
One can show that there are three possibilities by a geometric method. 
Let us denote each equation by a plane     respectively.
 
① It has a unique solution.
Three planes meets in a unique point.
[Ex]     

    

    

② It has infinitely many solutions.
[Ex] (1)     

    

    

    (2)     

    

    

    (3)     

    

    

③ It has no solution. (It is called 'inconsistent').

[Ex] (1)     

    

  

         (2)     

    

    

    (3)     

    

    

         (4)     

    

    

                                                                       ■
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Example 3 Solve the following linear system.
         

     

    

Solution Since there are five unknowns and three equations, assign to the 
any two unknowns arbitrary real numbers. Rearranging each equation, 
we get 

     

     

   

 

Substitute    ,    (  are arbitrary real numbers) to get
      

               

                  

     

 

Therefore, the solution of a given linear system is 
                  

(  are arbitrary real numbers).

The solution set is
                      ∈ .
Thus this system has infinitely many solutions.                  ■
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Example 4 Consider matrices

         


 


   

  
  



 


  

  


         








 


  









   

  
   

             .

    

Definition  [Matrix]

An array (or rectangle) consisting of real (or complex) numbers is called 
a matrix, and each number is called an entry.

 











  ⋯ ⋯ 
  ⋯ ⋯ ⋮ ⋮ ⋮
  ⋯ ⋯ 

  (2)

The row     ⋯ ⋯    ≤  ≤  of matrix   is called the -th 
row of  , and the column












⋮


  ≤  ≤ 

of   is called the -th column of  . A matrix with  rows and  
columns is called a size × matrix, and if  , it is called a square 
matrix of order .

 Let   denote the th row of  , and   denote the  the column of  . 
Therefore we can write   as follows.

 





  ⋮
 




    ⋯    

The entry  of a matrix   is also called the   entry of  , and the entries 
  …   of a matrix of order  are called main diagonal entries. Matrix (2) 
can be written as the   entries as follows.

    ×   or     
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  is a × matrix, and      .   is a ×  matrix, and 
      , and     are × × × × matrix 
respectively. The main diagonal entries of   are         , 
and   is also written as      .                                  ■

Example 5
Find the augmented matrix of the following linear system of equations. 

    

Definition  [Coefficient matrix and augmented matrix of a linear system]

For a linear system with  unknowns and  linear equations

  ⋯  

                          ⋯              (3) 
⋮

                          ⋯    ,

let

 











  ⋯ 
  ⋯ ⋮ ⋮ ⋮
 ⋯ 

 x












⋮


 b 












⋮


then Equation (3) can be written as 
x b.

The matrix   is called the coefficient matrix of Equation (3) and the 
matrix obtained from   and b

 ⋮ b  











  ⋯  ⋮ 
  ⋯  ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
 ⋯  ⋮ 

is called the augmented matrix of Equation (3).
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Solution  Let   be the coefficient matrix, x  the unknown, and b the 
constant, then

 








  

   
   

 x











 b 













Hence we have

x b  ⇔   








  

   
   




























Its augmented matrix is 

 ⋮ b  








   ⋮ 

    ⋮ 
    ⋮ 

                                                                   □

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080 
                                                                           
A=matrix(3, 3, [1,1,2,2,4,-3,3,6,-5])             # 3x3 matrix
b=vector([9,1,0])                        # constant vector
print A.augment(b,subdivide=True)               # augmented matrix
                                                                          
[ 1  1  2 |  9 ]
[ 2  4 –3 |  1 ]
[ 3  6 –5 |  0 ]                                                        ■

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 1
In the following procedure, the left side shows solving a linear system 
directly, and the right side shows solving it using an augmented matrix. 

           

    

    

                 







   ⋮ 

    ⋮ 
    ⋮ 

Add the multiplication of the first equation by   to the second 
equation.

2.2  Reference video:  http://youtu.be/jnC66zvqHJI, http://youtu.be/HSm69YigRr4   

 Practice site:  http://matrix.skku.ac.kr/knou-knowls/CLA-Week-2-Sec-2-2.html 

Gaussian elimination and Gauss-Jordan elimination

Gaussian elimination (also known as row reduction) is an algorithm for 
solving systems of linear equations. It is usually understood as a 
sequence of operations performed on the associated matrix of 
coefficients. Using row operations to convert a matrix into reduced row 
echelon form is sometimes called Gauss–Jordan elimination. Linear 
system of equations can be easily solved by using Gauss–Jordan 
elimination.

 Solving a linear system: using elimination method:

           
   

 ⇒  Multiplying 2 on the second equation,    
   

   

      ⇒  Subtracting the second equation from the first equation,    
  

 

      ⇒  Dividing the second equation by 7,    
  

    

      ⇒  Substituting    in the first equation,    
  

  ⇒      
  

 The following operations do not change the solution set.
  (1) Exchange two equations.                                ↔ 

  (2) Multiply a row by a nonzero real number.                

  (3) Add a nonzero multiple of a row to another row.        → 

  These are called Elementary Row Operations (ERO). 

http://youtu.be/jnC66zvqHJI
http://youtu.be/HSm69YigRr4
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-2-Sec-2-2.html
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   ⋮ 

    ⋮  
    ⋮ 

Add the multiplication of the first equation by -3 to the third equation.

               
  
   









   ⋮ 

    ⋮  
    ⋮  

Multiply the second equation by  to get

   
















   ⋮ 

  
 ⋮  



    ⋮  

Add the multiplication of the second equation by    to the third 
equation.

  












   ⋮ 

   

 ⋮  



   

 ⋮  



Multiply the third equation by  .

   
 












   ⋮ 

   
 ⋮  



   ⋮ 

Thus the system reduces to    

  

  


 

      

Now substituting    in the second equation, we get   . Substituting 
   and    in the first equation, we get   . Hence the solution is  
                                           ■
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  Definition  [Row echelon form(REF) and reduced row echelon form(RREF)]

When an × matrix   satisfies the following 3 properties, it is called 
a row echelon form (REF).
 (1) If there is a row consisting of only 0's, it is placed on the bottom 
position. 
 (2) The first nonzero entry appearing in each row is 1. This 1 is called 

a leading entry.  
 (3) If there is a leading entry in both the  th row and the    row, 

the leading entry in the (  )th row is placed on the right of the 
leading entry in the th row. 

 If matrix   is a REF and satisfies the following property,   is called 
a reduced row echelon form (RREF).

 (4)  If a column contains the leading entry of some row, then all the 
other entries of that column are 0

Example 2 The following are all REF.

Example 3 Consider matrices

Since matrices     do not satisfy the above properties (1), (2), (3) 
respectively, they are not REF.
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Example 4 The following are all RREF. 

 [Remark]
 Below are a general form of a REF and its corresponding RREF(here * is any 

number).

    

 Definition  [Elementary Row Operation(ERO)]

Given an × matrix  , the following operations are called elementary 
row operation (ERO).
  E1: Exchange the  th row and the  th row of  .       ↔ 

  E2: Multiply the  th row of   by a nonzero constant  .     

  E3: Add the multiplication of the  th row of   by   to the  th row.   
     

 EROs transform a given matrix into REF and RREF.
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 Definition  [Row Equivalent]

If   is obtained from a matrix   by elementary row operations,   and 
  are row equivalent.

Example 5 The following are equivalent.

 


 


 

 
  



 


 

 
  



 


 

  
  



 


 

 
  



 


 

 
          ■

Finding REF and RREF 

 For  








      

      
        

, find REF and RREF by applying ERO's.

                             (

Find a column whose

entries are not all zero and

which is located in

left-most position.

    (In this case, it is the first column)

Swap the first row with some

other row below to guarantee

that  is not zero.

                  Swap 1st and 2nd row 

    (In this case,    became ′ . This    is call a pivot.)

Divide the 1st row by 2 to make the

pivot entry = 1.

           Multiply 


to the 1st row.
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Eliminate all other entries in the 1st

column by subtracting suitable

multiples of the 1st row from the

other rows.

(Use elementary row operations).  

 Eliminate    in the 1st column by subtracting -2 multiple of the 1st row from the 3rd row. 

Continue steps 1, 2, 3, 4 for the remaining rows except the 1st row .

Find a column whose entries are not all zero and 

which is located in the left-most position (excluding the 1st column).

Since the leading entry is not 1, follow step 3.

Eliminate ″   in the 3rd column by subtracting -

5 multiple of the 2nd row from the 3rd row.  

Continue steps 1, 2, 3 for the rows except the 1st and 2nd row .

Find a column whose entries are not all zero (excludin

g the 1st and 2nd rows).
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Since there is a row whose entries are not all zero, f

ollow step 3.

Therefore we have REF of  as follows. 











      

     


 

     

Furthermore, we get the RREF of   from the above REF by making nonzer
o ″to be  by suitable multiples of each row.

Add the 
7
2

multiple of 3rd row to 2nd row.

Add the -6 multiple of 3rd row to 1st row.

Add the 5 multiple of 3rd row to 1st row.

Now we have the RREF of  .








     

     
     

     □

http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi?c=rref

http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi?c=rref
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Example 7
Solve the following by the Gauss elimination.

    

                                   

                                 

Solution  Its augmented matrix is 








   ⋮ 

    ⋮ 
    ⋮ 

 and its REF by EROs is  









    

    
    

. Therefore, since the corresponding linear system of the 

above augmented matrix is  

Example 6 Find the RREF of  .

 








    

    
      

            

Solution  http://matrix.skku.ac.kr/RPG_English/2-MA-RREF.html  
       http://matrix.skku.ac.kr/2014-Album/MC.html 

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080 
                                                                           
A=matrix(3, 5, [1,1,1,4,4,2,3,4,9,16,-2,0,3,-7,11])      # 3x5 matrix input
print A.rref()                               # A's RREF
                                                                          
[ 1  0  0  2 –1]
[ 0  1  0  3  2]
[ 0  0  1 –1  3]                                                     ■

   

Theorem  2.2.1
Two linear systems whose augmented matrices are row equivalent are 
equivalent (that is, they have the same solution sets.) 

 Gauss elimination: This is a method to transform the augmented matrix of a 
linear system into REF.  

http://matrix.skku.ac.kr/RPG_English/2-MA-RREF.html
http://matrix.skku.ac.kr/2014-Album/MC.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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  ,i.e,  









  
     
  

 

The solution is         .                               ■

Example 8 Solve the following system using the Gauss-Jordan elimination. 

Solution  We will use Sage to solve this.     □
Ÿ http://matrix.skku.ac.kr/RPG_English/2-VT-Gauss-Jordan.html   

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                        
A=matrix([[1,3,-2,0,2,0],[2,6,-5,-2,4,-3],[0,0,5,10,0,15], [2,6,0,8,4,18]])
b=vector([0,-1,5,6])                       
print A.augment(b).rref()
                                                             
[  1   3   0   4   2   0   0]
[  0   0   1   2   0   0   0]
[  0   0   0   0   0   1 1/3]
[  0   0   0   0   0   0   0]

Its corresponding linear system is 










       

   

  


By letting          (   are any real), its solution is

 Gauss-Jordan elimination: This is a method to transform the augmented matrix 
of a linear system into RREF. 

http://matrix.skku.ac.kr/RPG_English/2-VT-Gauss-Jordan.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080


- 56 -

                         .   ■

 From  Example 8 , we can express a general solution as a vector form. 
  ∈

   



































    


 







































 


















 


 
















 



























 











 






 











 

 




 











 






.  

  

 [Remark]  Gauss elimination and Gauss-Jordan elimination
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Example 9 Using the Gauss-Jordan elimination, express the solution of the following 
homogeneous equation as a vector form. 










        
            

      
          

 [Remark] Leading Variable, Free Variable and their Relation to RREF

l  a free variable: a variable corresponding to the column not containing a 
leading entry in RREF

l  a leading (pivot) variable: a variable corresponding to the column containing 
a leading entry in RREF

 

Homogeneous linear system

  ⋯   

                ⋯              (II)

⋮
   ⋯  

It is easy to see that x   …   is always a solution of a homogeneous 
system (II). x   is called a trivial solution.  Also if x  is a solution of (II) then any 
scalar multiple  x   is also a solution of (II). Similarly if x  and y are two 
solutions of a homogeneous system, so is their sum.  This shows that any 
homogeneous system has either a trivial solution or infinitely many solutions.
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Solution  Its augmented matrix is 










       ⋮ 
         ⋮ 
      ⋮ 
      ⋮ 

, and its RREF is 











      ⋮ 
      ⋮ 
      ⋮ 
      ⋮ 

. Thus, leading entry 1's correspond to leading 

variables  ,  ,   and the rest variables  ,  ,   to free variables. 
We have the following.

       ,    ,   

Now let free variables be   ,    ,   , then

     ,   ,    ,    ,   ,   .

Therefore      























 











 






 











 

 




 











 






.                         ■

   

Theorem  2.2.2 [No. of free variables in a homogeneous linear system]

In a homogeneous linear system with  unknowns, if the RREF of the 
augmented matrix has  leading 1's, the solution set has    free 
variables.

   

Theorem  2.2.3 
The system 

  



   for  ≤  ≤  always has a non-trivial solution if 

 . 

 The theorem can be proved using induction on the number on variables. 



- 59 -

 [Remark] Computer simulation

 [Elementary row operation] 
    http://www.geogebratube.org/student/b73259#material/28831

[Linear algebra with Sage, Smartphone App]
 https://play.google.com/store/apps/details?id=la.sage 

http://www.geogebratube.org/student/b73259#material/28831
https://play.google.com/store/apps/details?id=la.sage
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Chapter 2    Exercises

Ÿ http://matrix.skku.ac.kr/LA-Lab/index.htm 
Ÿ http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm 

Problem 1  Answer the questions for the following linear system.

     
     

     

 (1) Find the coefficient matrix.

 (2) Express the linear system in the form x b.

 (3) Find its augmented matrix.

Problem 2  Find a linear system with its augmented matrix.
            (Put the unknowns as  ⋯   .)

  








     ⋮ 

     ⋮ 
     ⋮  

Problem 3  Find the number of leading variables and free variables in the solution 
set of the following system.

  










          
        

   

http://matrix.skku.ac.kr/LA-Lab/index.htm
http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm
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Problem 4  Which matrices are REF or RREF? If one is not RREF, transform it to 
RREF.








     

     
   

, 








    

    
     

.

Problem 5  Solve the system using Gauss elimination.

          

       

        

       

.

Problem 6  Solve the system using Gauss-Jordan elimination.

      

     

    

    

.

Problem 7  In the following circuit, write a linear system to find current  . 

  

Solution      Let       ,       ,    ,       .
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       Then x  b  where  











    
     
   
    

, x 
















 and b 
















.   ■

Problem P1  In general, we are given a linear system with  equations and  
unknowns.  

                                ⋯  

                                ⋯  

                                          ⋮
                                ⋯  

If there are  free variables, what is the number of leading variables? 
From this, think about the relation among the numbers of free variables, leading 
variables, and unknowns. 

Problem p2  Write a linear system with 4 unknowns and 3 equations whose solution 
set is given below.

    




































 











 




 











 




 (here  ,  are any real)

Solution  The linear system         
      

       

   is an example.                ■

Problem p3  Suppose that three points        pass through the 
parabola      . By plugging in these points, obtain three 
linear equations. Find coefficients    by solving x b .  

Problem p4  Write a linear system with four unknowns and four equations satisfying 
each condition below.

 (a) A solution set with one unknown.

 (b) A solution set with two unknowns.
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Matrix and Matrix Algebra 

3
 3.1 Matrix operation
 3.2 Inverse matrix
 3.3 Elementary matrix
 3.4 Subsapce and linear independence
 3.5 Solution set of a linear system and matrix
 3.6 Special matrices
*3.7 LU-decomposition

Matrix is widely used as a tool to transmit digital sounds and images through 
internet as well as solving linear systems. We define the addition and product of 
two matrices. These operations are tools to solve various linear systems. Matrix 
product also becomes an excellent tool in dealing with function composition.

In the previous chapter, we have found the solution set using the Gauss 
elimination method. In this chapter, we define the addition and scalar 
multiplication of matrices and introduce algebraic properties of matrix operations. 
Then using the Gauss elimination, we show how to find the inverse matrix. 

Furthermore, we investigate the concepts such as linearly independence and 
subspace which are necessary in understanding the structure of a linear system. 
Then we describe the relation between solution set and matrix, and special 
matrices.  

Chapter
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3.1  Reference video: http://youtu.be/DmtMvQR7cwA, http://youtu.be/JdNnHGdJBrQ  

 ractice site: http://matrix.skku.ac.kr/knou-knowls/CLA-Week-3-Sec-3-1.html 

Matrix operation

This chapter introduces the definition of the addition and scalar 
multiplication of matrices and the algebraic properties of the matrix 
operations.  Although many of the properties are identical to those of 
the operations on real numbers, some properties are different. Matrix 
operation is a generalization of the operation on real numbers.

   

Definition  [Equality of Matrices]

Two matrices     ×   and     ×   of same size are equal if 
   for all  , and denote it by    .

 To define equal matrices, the size of two matrices should be the same.

Example 1 For what values of      the two matrices

 








  

   
   

,  








   

  
   

are equal?

Solution  For    , each entry should be equal. Thus (that is,   ) 
  ,   ,   ,   .                                        ■

   

Definition  [Addition and scalar multiplication of matrix]

Given two matrices     ×   and     ×   and a real number , 
the sum   of   and  , and the scalar multiple   of   by  are 
defined by

      ×  ,     ×  .

http://youtu.be/DmtMvQR7cwA
http://youtu.be/JdNnHGdJBrQ
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-3-Sec-3-1.html
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 To define addition, the size of two matrices should be the same.

Example 2 For  


 


   

   
  



 


  

   
  



 


 

 
, what is  ,  , 

 ?

Solution   


 


      

      




 


  

   
, 

      


 


 ·   ·   ·  

 ·    ·   ·  


 


   

   

      


 


  ·    · 

  ·    ·  


 


   

   
.                           □

Ÿ http://matrix.skku.ac.kr/RPG_English/3-MA-operation.html 
Ÿ http://matrix.skku.ac.kr/RPG_English/3-MA-operation-1.html 

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080 
                                                                           
A=matrix(QQ,[[1,2,-4], [-2,1,3]])
B=matrix(QQ,[[0,1,4], [-1,3,1]])
C=matrix(QQ,[[1,1],[2,2]])
print A+B                        # matrix addition
print 
print 2*A                        # scalar multiplication
print
print (-1)*C                     # scalar multiplication
                                                                          
[ 1  3  0]            [ 2  4 –8]              [-1 -1]
[-3  4  4]            [-4  2  6]              [-2 –2]                    ■

http://matrix.skku.ac.kr/RPG_English/3-MA-operation.html
http://matrix.skku.ac.kr/RPG_English/3-MA-operation-1.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Definition  [Matrix product]

Given two matrices     ×   and     ×  , the product   of   
and   is defined below. 

    ×  ,

where     ⋯  
  



  ≤  ≤   ≤  ≤ .

For two matrices   and   to be compatible for multiplication, we require the 
number of columns of   to be equal to the number of rows of  . The resultant 
matrix   is of size number of rows of   by the number of columns of  .
[Remark]

[Remark] Meaning of matrix product

 Let     ×      ×  , and denote the th row of   by    and the th 
column of   by   . Then

   











  

  ⋮
 

      ⋯    











  

    
 ⋯  

 

⋮ ⋮
 

  ⋯   
 

 × 

Thus,    
  ⋯  











⋮


    ⋯ 
  





 Note that the inner product of th row vector of   and the th column vector 
of   is the   entry of  .
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Example 3
Let  



 


   

  
,  











  
  
 

. Then 

 


 


   

  











  
  
 

    

      

 


         

       




 


   

  
 □

Ÿ http://matrix.skku.ac.kr/RPG_English/3-MA-operation-1-multiply.html

  

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080 
                                                                           
A=matrix(QQ,[[1,2,-1], [3,1,0]])
B=matrix(QQ,[[-2,1], [0,-3], [2,1]])
print A*B                                # Don't forget to include (*)!
                                                                          
[-4 -6]
[-6  0]                                                                  ■

 Using matrix product, one can express a linear system easily. Let us consider 
the following linear system 

  ⋯  

  ⋯  

⋮
   ⋯  

   and let     ×  , x












⋮


, b 












⋮


 be the coefficient matrix, the unknown 

vector and the constant vector respectively.  Then we can express the linear 
system as 

 x  b ⇔ 
 

 ⋯
  b

http://matrix.skku.ac.kr/RPG_English/3-MA-operation-1-multiply.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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⋮















⋮


⋯












⋮















⋮


⇔

   

   

Theorem  3.1.1
Let     be matrices of proper sizes (oeprations are well defined) and 
let   be scalars. Then the following hold.

 (1)            (commutative law of addition)
 (2)      (associative law of addition)
 (3)           (associative law of multiplication)
 (4)   (distributive law)
 (5)     (distributive law)
 (6)   

 (7)     

 (8)   

 (9)    

The proof of the above facts are easy and readers are encouraged to prove them.

Example 4 Check the associative law of the matrix product.

 








 

 
 

  


 


 

 
  



 


 

 

Solution  Since  








 

 
 



 


 

 










 

 
 

, we have

        








 

 
 



 


 

 










 

 
 

       Since  


 


 

 


 


 

 




 


 

 
, we have

       








 

 
 



 


 

 










 

 
 

. Hence,    .       ■

 The properties of operations on matrices are similar to those of operations on 
real numbers which are well known, 
 Exception: For matrices   , we do not have     in general.
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Example 5 Suppose that we are given the following matrices      .

 


 


  

    
  









   

   
    

  








 

  
 

,  

 


 


  

 
  



 


 

 
.

Then   is defined but   is not defined. Similarly   is a × 
matrix but   is a ×  matrix, and hence ≠  . Also although 
  and   are ×  matrices, as we can see below, we have  ≠
 .

                   


 


   

 
  



 


 

  
                       ■

[Remark] Computer simulation

  [matrix product] (Commutative law does not hold.)
  http://www.geogebratube.org/student/m12831

http://www.geogebratube.org/student/m12831
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Definition  [Zero matrix]

A zero matrix consists of entries of 0's and denoted by  (or  ×  ). 



 


 

 









  

  
  




 


   

   

















 ⋯

   

Theorem  3.1.2
For any matrix   and a zero matrix   of a proper size, the following hold.
 (1)     

 (2)   

 (3)  

 (4)     

 Note: Although    , it is possible to have  ≠  , ≠  . Similarly,
        although    ,  ≠  , it is possible to have ≠ . 

Example 6 Let  


 


 

 
  



 


 

 
  



 


 

 
  



 


 

 
. Then  



 


 

 
 

 But  ≠   and ≠  . Also     but  ≠   ≠  .       ■

We should first define scalar matrices.

   

Definition  [Identity matrix]

A scalar matrix of order  with diagonal entries all 1's is called an 
identity matrix of order  and is denoted by  . That is,

 











  ⋯ 
  ⋯ 
⋮ ⋮ ⋱ ⋮
  ⋯   × 

 Let   be an × matrix and the identity matrix    . It is easy to see that
     .
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Example 7 Let  


 


   

  
. Then  



 


 

 


 


   

  




 


   

  
  ,

 


 


   

  









  

  
  




 


   

  
  .

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080 
                                                                           
A=matrix(QQ,[[4,-2,3], [5,0,2]])
I2=identity_matrix(2)       # identity matrix identity_matrix(n), n is the order
I3=identity_matrix(3)
O2=zero_matrix(3, 2)      # zero matrix zero_matrix(m, n), m, n are the order
print I2*A
print
print A*I3
print
print A*O2
                                                                          
[ 4 -2  3]
[ 5  0  2]

[ 4 -2  3]
[ 5  0  2]

[0 0]
[0 0]                                                                 ■

   

Definition  

Let   be a square matrix of order . The th power of   is defined 
by 

       ⋯  ( times)

   

Theorem  3.1.3
If   is a square matrix and    are non negative integers, then

             .

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 8 Let  


 


  

 
. Find   ,   ,    and confirm that      .

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080 
                                                                           
A=matrix(QQ,[[4,-2], [5,0]])
print A^2                   # Works only for a square matrix
print   
print A^3                   # same format as power of real numbers
print
print A^0                   # When the exponent is 0, get identity matrix
print
(A^2)^3==A^6               # check the power rule
                                                                          
[  6  -8]
[ 20 -10]

[-16 -12]
[ 30 -40]

[1 0]
[0 1]

True                                                                    ■

 In the set of real numbers, we have          
          . However, the commutative law under matrix 
product does not work and thus we only have the following. 

      .

   When    , we have       .

   

Definition  [Transpose matrix]
For a matrix     ×  , the transpose of   is denoted by  and defined by

   ′  ×  , ′     ≤  ≤   ≤  ≤  .

 The transpose    of   is obtained by interchanging the rows and columns of 
 .

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 9
Find the transpose of the following matrices.

   


 


   

  
  









   

   
  

  








 

  
 

,         










 

Solution    








 

  
 

  








  

   
   

   


 


   

  
,

        











         .                                      □

Sage  http://sage.skku.edu 또는 http://mathlab.knou.ac.kr:8080 
                                                                           
A=matrix(QQ,[[1,-2,3], [4,5,0]])
C=matrix(QQ,[[5,4], [-3,2], [2,1]])
D=matrix(QQ, [[3,0,1]])
print A.transpose()                # Transpose of a matrix  A.transpose()
print
print C.transpose()
print
print D.transpose()       
                                                                          
[ 1  4]                [ 5 –3  2]               [3]
[-2  5]                [ 4  2  1]               [0]
[ 3  0]                                         [1]                      ■

   

Theorem  3.1.4
Let    be matrices of appropriate sizes and  a scalar. The following 
hold. 
 (1)       
 (2)      

 (3)     

 (4)      .

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 11 Let  


 


  

 
  



 


 

  
. Show that (5) of Theorem 3.1.5 is true.

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080 
                                                                           
A=matrix(QQ,[[1,-2], [4,5]])
B=matrix(QQ,[[5,4], [-3,2]])
print (A*B).trace()            # trace. A.trace()
print 
print (B*A).trace()  
                                                                          
37

37                                                                      ■

Example 10 Let  


 


 

 
  



 


  

  
. Show that (3) of Theorem 3.1.4 is true.

Solution  Since  


 


 

 


 


  

  




 


  

  
,  









 

 
 

. 

Also,   








 

 
 



 


 

 










 

 
 

.  Thus      .            ■

   

Definition  [Trace]

The trace of     ×   is defined by  tr     ⋯  
  



.

   

Theorem  3.1.5
If  ,   are square matrices of the same size and ∈, then 
 (1) tr    tr  
 (2) tr    tr ,  ∈

 (3) tr   tr tr 
 (4) tr    tr tr 
 (5) tr tr 

Proof  We prove the item (5) only and leave the rest as an exercise.

              tr  
  




  



 
  




  



 
  




  



 tr.         ■

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 2
Let  









  

  
  

. Note that the third row of   has all zeroes. Thus for 

any matrix

 











  
  
  

 the third row of   is     . Therefore there 

does not exist   such that   , that is,   is singular. 

3.2  Reference video: http://youtu.be/GCKM2VlU7bw, http://youtu.be/yeCUPdRx7Bk     

 Practice site: http://matrix.skku.ac.kr/knou-knowls/CLA-Week-3-Sec-3-2.html 

Inverse matrix

In this chapter, we introduce an inverse matrix of a square matrix which 
plays like a multiplicative inverse of a real number. We investigate the 
properties of an inverse matrix. You will see that some properties holding in 
the inverse of a real number are not true in the matrix inverse operation 
although most hold in both inverses.

   

Definition  

A square matrix   of order  is called invertible (or nonsingular) if 
there is a square matrix   such that

     .

This matrix   if exists is called the inverse matrix of  . If such a 
matrix   does not exist,   is called noninvertible, (or singular).

Example 1 From matrices  


 


  

  
  



 


 

 
, we see that   is the inverse 

matrix of   by the following computation. 

 


 


  

  


 


 

 




 


 

 
  ,

          


 


 

 


 


  

  




 


 

 
  .                              ■

http://youtu.be/GCKM2VlU7bw
http://youtu.be/yeCUPdRx7Bk
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-3-Sec-3-2.html
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Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix(QQ,[[1,4,3],[2,5,6],[0,0,0]])
A.is_invertible()       # check if matrix is invertible A.is_invertible()
                                                                          
False                                                                ■

 

  

Theorem  3.2.1
If   is an invertible square matrix of order , then an inverse of   is 
unique.

Proof  Suppose that   are inverses of . Then as
     ,     

we have

           

Thus an inverse of   is unique.                                              ■

Example 3 A necessary and sufficient condition for  


 


 

 
 to be invertible is that 

 ≠ . Hence one has

   
 


 


  

  













 

 

 

 
 


.

It is straightforward to check



 


 

 












 

 

 

 
 






 


 

 













 

 

 

 
 




 


 

 
.            ■

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080


- 77 -

   

Theorem  3.2.2
 If    are invertible square matrices of order  and   is a nonzero 
scalar, then the following hold.
(1)     is invertible and       .
(2)   is invertible and         .

(3)   is invertible and    

   .

(4)    is invertible and           .

Proof  (1)~(4) Just check that the product of matrices are the identity matrix.  ■

   

Theorem  3.2.3
If   is an invertible matrix, then so is    and the following holds.

        .

Example 4 Let  


 


 

 
  



 


 

 
. Check that         .

Solution  Since   
 


 


  

  




 


  

  
, 

          
 


 


  

  




 


  

  
, we have

      


 


  

  


 


  

  




 


  

  
. Also since 

   


 


 

 


 


 

 




 


 

 
 we have 

    
 


 


  

  




 


  

  
.                       ■

Ÿ http://matrix.skku.ac.kr/RPG_English/3-SO-MA-inverse.html 

http://matrix.skku.ac.kr/RPG_English/3-SO-MA-inverse.html
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Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix(ZZ, 2, 2, [3, 5, 1, 2])
B=matrix(ZZ, 2, 2, [1, 3, 2, 7])
AB=A*B                          # AB calculation
print AB.inverse()                # inverse of AB, format A.inverse()
print 
print B.inverse()*A.inverse()      # B^(-1)*A^(-1) 
                                                                          
[ 17 -44]
[ -5  13]

[ 17 -44]
[ -5  13]                                                                ■

   

<3D printing Object of Conic Section>
http://www.youtube.com/watch?v=q_XPFJjncmQ&feature=youtu.be 

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
http://www.youtube.com/watch?v=q_XPFJjncmQ&feature=youtu.be
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Example 1 Listed below are three elementary matrices and the operations that 
produce them.









  

  
  

 : Interchange the 2nd and the 3th rows.     ↔ 









  

  
  

 : Add 2 times the 1st row to the 2nd row.  → 









  

  
  

 : Multiply the 2nd row by 3. → 

Sage  http://sage.skku.edu (Warning!! The index of Sage starts 
from 0.)
                                                                           
E1=elementary_matrix(4, row1=1, row2=2)    # elementary matrix r2 <--> r3
# elementary_matrix(n, row1=i, row2=j)      exchange of ith row, jth row
E2=elementary_matrix(4, row1=2, scale=-3)   # elemenatry matrix (-3)*r3
# elementary_matrix(n, row1=i, scale=m)     multiply ith row by m
E3=elementary_matrix(4, row1=0, row2=3, scale=7) # row 7*r4 + r1
# elementary_matrix(n, row1=i, row2=j, scale=m)   add m times jth row to 
the ith row.
print E1

3.3  Reference video: http://youtu.be/GCKM2VlU7bw, http://youtu.be/oQ2m6SSSquc 

 Practice site:  http://matrix.skku.ac.kr/knou-knowls/CLA-Week-3-Sec-3-3.html 

Elementary matrices

In the previous section, we defined an inverse of square matrices. In this 
section, we shall discuss how to find an inverse of square matrices by using 
elementary row operations and elementary matrices.

   

Definition  

An n by n matrix is called an elementary matrix if it can be obtained 
from   by performing a single elementary row operation (ERO). A 
permutation matrix is obtained by exchanging rows of  .

http://youtu.be/GCKM2VlU7bw
http://youtu.be/oQ2m6SSSquc
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-3-Sec-3-3.html
http://sage.skku.edu
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print E2
print E3
                                                                          
[1 0 0 0]          [ 1  0  0  0]          [1 0 0 7]
[0 0 1 0]          [ 0  1  0  0]          [0 1 0 0]
[0 1 0 0]          [ 0  0 -3  0]          [0 0 1 0]
[0 0 0 1]          [ 0  0  0  1]          [0 0 0 1]                      ■

Example 2 [Property of elementary matrix] The product of an elementary matrix   on 
the left and any matrix   is the matrix that results when the 
corresponding same row operation is performed on  .









  

  
  

↔










  

  
  

            








  

  
  









  

  
  










  

  
  









  

  
  

 










  

  
  

           








  

  
  









  

  
  










  

  
  









  

  
  












  

  
  

              








  

  
  









  

  
  










  

  
  

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix(QQ, 3,3, [1,2,3,1,1,1,0,1,3])
E1=elementary_matrix(3, row1=1, row2=2)           # r2 <--> r3
E2=elementary_matrix(3, row1=1, row2=0, scale=2)  # 2*r1 + r2
E3=elementary_matrix(3, row1=1, scale=3)           #  3*r2
print E1*A
print
print E2*A
print
print E3*A
                                                                          
[1 2 3]          [1 2 3]          [1 2 3]
[0 1 3]          [3 5 7]          [3 3 3]
[1 1 1]          [0 1 3]          [0 1 3]                                 ■

[Remark] The inverse of an elementary matrix is elementary.

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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 Since 
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 Since 








  

  
  









  

  
  










  

  
  

, 








  

  
  

 










  

  
  

  Since 








  

  
  









  

  
   










  

  
  

, 








  

  
  

 










  

  
   

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                                   
 E1=elementary_matrix(3, row1=1, row2=2)              #  r2 <--> r3
 E2=elementary_matrix(3, row1=2, row2=1, scale=4)     #  4*r2 + r3
 E3=elementary_matrix(3, row1=1, scale=3)              #  3*r2
 print E1.inverse()
 print
 print E2.inverse()
 print
 print E3.inverse()
                                                                                  
 [1 0 0]          [ 1  0  0]          [  1   0   0]
 [0 0 1]          [ 0  1  0]          [  0 1/3   0]
 [0 1 0]          [ 0 -4  1]          [  0   0   1]

Finding the inverse of an invertible matrix.

We investigate the method to find the inverse of an invertible matrix using 
elementary matrices. First consider equivalent statements of an invertible matrix 
(its proof will be treated in Chapter 7).

   

Theorem  3.3.1 [Equivalent statements]
For any × matrix  , the followings are equivalent.
(1)   is invertible.
(2)   is row equivalent to  . (i.e. RREF    ) 
(3)   can be expressed as a product of elementary matrices.
(4) x   has only the trivial solution .

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 3 Find the inverse of  

 








  

  
  

Solution  Consider  ⋮  . Then 

[Remark]

              

   

Theorem  3.3.2 [Computation of an inverse]
   


     

[Remark] Finding an inverse using the Gauss-Jordan elimination.

  [Step 1] For a given  , augment   on the right side so that we make 
         a × matrix    . 
  [Step 2] Compute the RREF of  ⋮  .
  [Step 3] Let  ⋮  be the RREF of  ⋮   in the step 2. Then, following hold.

        (ⅰ) If    , then      .
        (ⅱ) If ≠  , then   is not invertible so that     does not exist. 
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                               ⋮   








   ⋮   

   ⋮   
   ⋮   

and, its RREF is given as follows. 

    








   ⋮   

   ⋮   
   ⋮   

→








   ⋮   

    ⋮    
    ⋮    

  

 →








   ⋮   

    ⋮    
    ⋮    

→








   ⋮   

    ⋮    
   ⋮     

 →








   ⋮    

   ⋮     
   ⋮     

→








   ⋮    

   ⋮     
   ⋮     

  ⋮ 

Since    ,      .

∴   










   
    
    

                                       ■

Example 4 Find the inverse of

 








  

   
   

Solution  It follows from a similar way to Example 03, 

    








   ⋮   

    ⋮   
    ⋮   

→








   ⋮   

     ⋮    
   ⋮   

 →








   ⋮   

     ⋮    
   ⋮    

  ⋮ 

Since ≠ ,  does not exist. ≠  .                                ■

Example 5 Find the inverse of

 








   

   
   

Ÿ http://matrix.skku.ac.kr/RPG_English/3-MA-Inverse_by_RREF.html

  

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

http://matrix.skku.ac.kr/RPG_English/3-MA-Inverse_by_RREF.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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A=matrix(QQ, 3, 3, [1, -1, 2, -1, 0, 2, -6, 4, 11])
I=identity_matrix(3)
Aug=A.augment(I).echelon_form() # augmented matrix [A : I] echelon_form
show(Aug)
                                                                          
[     1      0      0  |  8/15 -19/15   2/15]
[     0      1      0  |  1/15 -23/15   4/15]
[     0      0      1  |  4/15 –2/15    1/15]

We can extract inverse of   using slicing of the above matrix.
                                                                           
Aug[:, 3:6]
                                                                          
[  8/15 -19/15   2/15]
[  1/15 -23/15   4/15]
[  4/15  -2/15   1/15]

Thus   










   

   
   

.                                              ■

‘If you want to learn about nature, to 
appreciate nature, it is necessary to 
understand the language(Mathematics) that 
she speaks in.’

Richard Phillips Feynman (1918–1988) was an American theoretical physicist 
known for his work in the path integral formulation of quantum mechanics, 
the theory of quantum electrodynamics, and the physics of the superfluidity 
of supercooled liquid helium, as well as in particle physics.
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3.4  Reference video: http://youtu.be/HFq_-8B47xM. http://youtu.be/UTTUg6JUFQM      

 Practice site: http://matrix.skku.ac.kr/knou-knowls/CLA-Week-4-Sec-3-4.html 

Subspaces and Linear Independence

In this section, we define a linear combination, a spanning set, a 
linear (in)dependence and a subspace of ℝ. We will also learn 
how to solve the system of linear equations by using the fact that 
solutions for a system of homogeneous linear equations form a 
subspace of ℝ.

Note that ℝ  with standard addition and scalar multiplication is also called a 
vector space over ℝ  and its elements are called vectors.

   

Definition  [Subspace]

Let  be a nonempty subset of ℝ . Then  is called a subspace of ℝ 
if  satisfies the following two conditions. 

   (1) x  y∈ ⇒ x  y∈   (closed under the addition)
   (2) x ∈ ∈ℝ ⇒ x ∈  (closed under the scalar
       multiplication)

 All subspaces of ℝ contain zero vector.
  x∈ ∈ℝ ⇒ x   ∈

Example 1   and ℝ  are subspaces of ℝ  where    ⋯   is denoted by 
the origin. They are called the trivial subspaces.     ■

Example 2 A subset   ∈ℝ     of ℝ  satisfies two conditions for 
subspace. Hence,   is a subspace of ℝ . On the other hand, a 
subset   ∈ℝ      of ℝ  does not satisfy conditions 
for subspace so that   is not a subspace of ℝ .

        ,  ∈  but       ∉                    ■

http://youtu.be/HFq_-8B47xM
http://youtu.be/UTTUg6JUFQM
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-4-Sec-3-4.html
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Example 3 All subspaces of ℝ  are one of the followings.
1. zero subspace :  
2. Lines through the origin. 
3. ℝ

All subspaces of ℝ  are one of the following.
1. zero subspace : 
2. Lines through the origin
3. Planes through the origin
4. ℝ ■

                                                  ■

Example 5 For ∈ ×  , show that

  x∈ℝ  x  

is a subspace of ℝ. (This  is called a solution space or null space 
of  )

Solution  Clearly,    so that ∈ ,  ≠ ∅ . Since for x  y∈ , ∈ℝ 

x  , y  ,

we can obtain that
x  y  x y      and

Example 4 Show that a subset             ∈ℝ is a subspace of 
ℝ .

Solution  For

x      , y      ∈, ∈ℝ
the following hold.

(ⅰ) x y              ∈

(ⅱ) x      ∈

Therefore,  is a subspace of ℝ .                         ■

Let  ×   denote the set of all × matrices over ℝ .
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 x   x    .
      This implies x  y ∈ x∈.

Therefore,  is a subspace of ℝ.                          ■

Example 6 Let x        x      be vectors of ℝ . Can x 

     be a linear combination of x and x?

Solution  The answer is depend on whether there exist     in ℝ  such 
that

x  x  x.

From this observation, we can obtain

          










 


 











 
 

 











 


  ⇒   








 

   
  




 

















 


           □

      One can easily show that the above system has no solution.
Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

                                                                           
A=matrix(3, 3, [1, 3, 2, -2, -5, -6, -1, 4, 3])  # augmented matrix
print A.rref()                  
                                                                          
[1 0 0]
[0 1 0]
[0 0 1]

Since this system of linear equation has no solution, there are no such 
scalars    exist. Consequently, x  is not a linear combination of x x. ■

   

Definition  [linear combination]

If x∈ ℝ  can be expressed in the form

x  x  x  ⋯  x    … ∈ℝ

with x x ⋯  x⊆ ℝ , then x  is called a linear combination of 
vectors x x ⋯  x .

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 7 Show that the set of all linear combinations of   x x ⋯  x⊆ ℝ

  x  x  ⋯  x    ⋯  ∈ℝ 

is a subspace of ℝ .

Solution  Let x y∈ , ∈ℝ. Then there exist   ∈ℝ     ⋯  such 
that

x  x  x  ⋯  x  y  x  x  ⋯  x .

Hence

x  y    x    x  ⋯     x ,

                 and x   x   x  ⋯   x .
      This implies x  y ∈ x∈.

Hence,   is a subspace of ℝ.                          ■

   In Example 7 , we saw that for a subset   x x ⋯  x ⊆ ℝ , the set of all 
linear combinations  x  x  ⋯  x    ⋯  ∈ℝ  of   is a 
subspace of ℝ . We say   is a subspace of ℝ  spanned by  . In this case, 
we say   spans  and S is a spanning set of . We denote it 

  span  or      .

  In particular, if all vectors in ℝ  can be expressed a linear combination of  , 
then   spans ℝ . That is, 

ℝ      x  x  ⋯  x    …∈ℝ 

  

Example 8  (i) Show that      is a spanning set of ℝ .
 (ii) Show that         is a spanning set of ℝ .
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Example 9  For

x      x       x      

determine whether   x x x spans ℝ  or not.

Solution  This is a question whether there exist  ,  ,   such that a given 
vector x      is written as 

x  x  x  x  ∈ℝ . 

(Using column vectors)

       











 












 











 



 











 



  ⇒   








    

  
  



























         □

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix(3, 3, [1, -3, -2, 0, 1, 1, 1, 1, 2])  # coefficient matrix
print A.rref()
                                                                          
[1 0 1]
[0 1 1]
[0 0 0]

This means that one of     cannot be determined. Therefore this 
linear system has a case that the system cannot determine a unique 
solution.                                                              ■

  

 

Definition  [column space and row space]

Let    ∈ ×  . Then,  columns       ⋯      of   span a 
subspace of ℝ . This subspace is called a column space of  , denote 
by

       …     or Col( ).
  Similarly, a row space of   is defined by a subspace of ℝ  spanned 
by  rows       ⋯      of  , denoted by

    …     or Row( ).

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Definition  [Linearly Independent and Linearly Dependent]

If   x x ⋯  x⊆ ℝ  satisfies

x  x  ⋯  x     … ∈ℝ 

                   ⇒      ⋯    

then x x ⋯  x(or subset ) are called linearly independent.

If x x ⋯  x(or subset  ) are not linearly independent, then it is called 
linearly dependent.

  If  is linearly dependent, there exist at least one non-zero scalar 
in   …  such that

x  x  ⋯  x   .

 The unit vectors of ℝ

e    …   e    …   … e   …   

 are linearly independent. This is because
                   e  e  ⋯  e  

               ⇒     ⋯      ⋯  ⋯    ⋯      ⋯  

               ⇒    ⋯       ⋯  

               ⇒      ⋯    . 

Example 10 Show that for x      x    ,   x x is linearly 
independent.

Solution  For any   ∈ℝ ,
                x  x     ⇒                 
                                ⇒              

Thus     , and   is linearly independent.        ■
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Example 12 For

x       x      x     

in ℝ , Show that   x x x is linearly dependent.

Solution   For any    ∈ℝ , if x  x  x   , then

         











 

 














 


























  ⇒   









  

  
   



























         □

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix(3, 3, [1, 1, 0, 0, 1, 1, -1, 0, 1])  # coefficient matrix
print A.rref()
                                                                          
[ 1  0 -1]
[ 0  1  1]
[ 0  0  0]

This means that the above equations can be reduced to two equations 
of three variables. Since it has three variables more than the number of 
equations so that there are non-trivial solutions. One of them is given 

Example 11 Show that if x x x  in ℝ  are linearly independent, then

x  x  x  x  x  x

are also linearly independent.

Solution  For any    ∈ℝ, 

x  x  x   x  x  x   

    ⇒      x     x  x   .

Since x x x are linearly independent,

             

                             ⇒       

Therefore x  x  x  x  x  x are linearly independent.    ■

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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by  ,   ,   . Therefore there exist non zero scalars    ,   
is linearly dependent.                                               ■

   

Theorem  3.4.1
For a set   x x ⋯  x ⊆ ℝ , the followings hold.

(1) A set   is linearly dependent if and only if some element in   can be 
expressed as a linear combination of the other elements in  .

(2) If   contains the zero vector, then   is a linearly dependent.
(3) If a subset  ′  of   is linearly dependent, then   is also linearly 

dependent. 
   If   is linearly independent, then ′  is also linearly independent.

Proof  (1) (⇒ ) If  is linearly dependent, then there exist     ⋯   such that

x  x  ⋯  x  

where at least one element in     ⋯  is a nonzero.
Without loss of generality, if ≠  then,

x  
 x  ⋯  

 x

so that x can be expressed as a linear combination of the other vectors 
in 
(⇐ ) Without loss of generality, we can write

x  x  ⋯  x

so that

x  x  ⋯  x  

Hence,  is linearly dependent since  ≠ .

Proofs of the rest are left as an exercise.                            ■

 In other words, that set   is linearly independent means that any vector in   
cannot be written as a linear combination of the other vectors in  . 

 In ℝ , there are at most  vectors in a linearly independent set.
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Theorem  3.4.2 (For proof, see Theorem 7.1.2)

In ℝ ,     vectors are always linearly dependent.

Example 13 For x      x      x      x     in ℝ, we 
can easily check that   x xx x is linearly dependent from 
Theorem 3.4.2.                     ■

[Remark] Lines and plaines (from the viewpoint of subspace)

 (1) Note that the span of nonzero vector v in ℝ. v   ∈ℝ is a subspace 
containing the zero vector. Also x  v   ∈ ℝ forms a line through x

and parallel to v. In other words, x x  v is translate of x v by x . 
 (2) In general, if x v v ⋯  v are vectors in ℝ , then x x  v ⋯ v

( ∈ ℝ ) is a subset of ℝ which is the translation of a subspace
x v ⋯ v, through the origin, by x . 
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Example 1 The following system can be written as x  b . 
     

      

    

where  








  

  
  

 x

















 b 










 
. It is easy to show that   is 

invertible, and   










   
    
    

. Thus the solution of the above 

system is given by

x   b 










   
    
    












 












 



.

That is         .                                   □
Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

                                                                           
A=matrix(3, 3, [1, 2, 3, 2, 5, 3, 1, 0, 8])      # coefficient matrix
b=vector([1, 3, -1])
Ai=A.inverse()                                # inverse matrix calculation
print "x=", Ai*b                                    
print
print "x=", A.solve_right(b)                    # solve directly. 

3.5  Reference video: http://youtu.be/daIxHJBHL_g, http://youtu.be/O0TPCpKW_eY    

 Practice site: http://matrix.skku.ac.kr/knou-knowls/CLA-Week-4-Sec-3-5.html 

Solution set and matrices

In this section, we first state the relationship between invertibility of 
matrices and solutions to systems of linear equations, and then consider 
homogeneous systems.

   

Theorem  3.5.1 [Relation between an invertible matrix and its solution]
If  an  × matrix   is invertible and b  is a vector in ℝ , the system 

x b
has a unique solution x   b .

http://youtu.be/daIxHJBHL_g
http://youtu.be/O0TPCpKW_eY
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-4-Sec-3-5.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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x= (-1, 1, 0),     x= (-1, 1, 0)                                          ■

[Remark] The homogeneous linear system

    ⋯   

    ⋯  

⋮
    ⋯   

can be written as x  , where

      











  ⋯ 
  ⋯ ⋮ ⋮ ⋮
 ⋯ 

 x












⋮


  












⋮


  The vector x   is called a trivial solution, and the solution x≠  is called a 
nontrivial solution. Since a homogeneous linear system always has a trivial 
solution, there are two cases as follows.

  (1) It has only a trivial solution.
  (2) It has infinitely many solutions (i.e. it has nontrivial solutions as well.) 
  

   

Theorem  3.5.2 [Nontrivial solution of a homogeneous system]
A homogeneous system with  equations and   variables such that   
 (i.e. the number of variables is greater than that of equations) has 
nontrivial solutions.

For a detailed proof for this theorem, see Linear Algebra : A Geometric Approach 
by S. Kumaresan, Prentice Hall of India, 2000.
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Example 2 The homogeneous linear system
       

    

     

has the following augmented matrix and its RREF.
Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

                                                                           
A=matrix(3, 5, [1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0])  
# augmented matrix 
print "A="
print A
print
print "RREF(A)="
print A.rref()           # RREF 
                                                                          
A=
[1 1 1 1 0]
[1 0 0 1 0]
[1 2 1 0 0]

RREF(A)=
[ 1  0  0  1  0]
[ 0  1  0 -1  0]
[ 0  0  1  1  0]

The corresponding system of equations is
   
    

   

Let    ( : a real number). Then the solution to (2) is

              ∈ℝ .

The solution is trivial if    , and nontrivial if ≠  .       ■

   

Definition  [The associated homogeneous system of linear equations]
Given a linear system x b, x   is called the associated 
homogeneous system of linear equations of x b.

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 3 Consider a system of linear equations.











      
        
     
     





































 



The associated homogeneous linear system is as the following:











      
        
     
     








































Solution  Since the matrix size is greater than 2, let us use Sage.
 The RREF of the augmented matrix of the above system is as follows :

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080 
                                                                           
A=matrix(4, 7, [1, 2, -2, 0, 2, 0, 0, 2, 6, -5, -2, 4, -3, -1, 0, 0, 5, 10, 0, 
15, 5, 2, 6, 0, 8, 4, 18, 6])         # augmented matrix
print A.rref()                       # RREF
                                                                          
[  1   0   0   4   2   0   0]
[  0   1   0   0   0   0   0]
[  0   0   1   2   0   0   0]
[  0   0   0   0   0   1 1/3]

Thus the above system reduces to

                  ,   ,     ,   .

Note that   and   are free variables.
Let   ,    . Then we have












































 











 


 




 











 






,  ∈ℝ .

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Consider the augmented matrix of RREF of its associated homogeneous 
linear system.

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080 
                                                                           
B=matrix(4, 7, [1, 2, -2, 0, 2, 0, 0, 2, 6, -5, -2, 4, -3, 0, 0, 0, 5, 10, 0, 
15, 0, 2, 6, 0, 8, 4, 18, 0])       # augmented matrix
print B.rref()                     # RREF
                                                                          
[1 0 0 4 2 0 0]
[0 1 0 0 0 0 0]
[0 0 1 2 0 0 0]
[0 0 0 0 0 1 0]

It is easy to see that the solution to this system is given by























 











 


 




 











 






,  ∈ℝ .    ■ 

When compared geometrically the solutions to a system and those of 
an associated homogeneous linear system, the solution set for the 
associated homogeneous linear system is merely translated by the 
vector x  below.

x 




















  We call the vector x  a particular solution which can be obtained by 
substituting     .

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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[Remark]  The vectors of the solution space of x   are orthogonal to the rows of  .

[Remark] Relation between the solution set of the linear system and that of the 
associated homogeneous linear system. 

  If x   and x  b , then

x x   xx   b  b.

 Thus a system of linear equation x b has solutions. Let   be a solution 
space to x  . If x  is a solution to x b, then

x  x  x  x ∈ 

is a solution set of x b. 

 A geometric meaning of x  which is a solution set of x b is a set of 
translation when a particular solution x  is added to a solution set  of x. 
Since x  does not contain a zero vector, it is not a subspace of  .

   

Theorem  3.5.3 [Equivalent theorem of an invertible matrix]
For an × matrix  , the following are equivalent.
(1) RREF   

(2)   is a product of elementary matrices.
(3)   is invertible.
(4)   is the unique solution to x .
(5) x b  has a unique solution for any b ∈ℝ .
(6) The columns of   are linearly independent.
(7) The rows of   are linearly independent.
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  Let us think of the homogeneous system x  with  variables. If the 
system has  linear equations, then the size of matrix   is ×. It can be 
rewritten using inner product. Let    ,    , ⋯ ,     indicate rows of a matrix 
 .











  

  ⋮
  

x 











  ⋅ x
  ⋅ x
⋮

  ⋅ x













⋮


  Thus ⋅ x ( ≤  ≤ ) if x  is a solution to x . That is, the 
vectors in this solution space of x  are all orthogonal to the row vectors 
of the matrix  .

Example 4 Consider the system of linear equations:          ,   
         ,          . It is easy to check that 
v  is non-trivial solution of this system.  Let us verify that v is 
orthogonal to row vectors of the coefficient matrix   of the above 
system.

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080 
                                                                           
A=matrix([[1,2,1,-3],[2,-1,1,-2],[2,1,1,-3]])
v=vector([1,1,3,2])
R=A.rows()
print v.dot_product(R[0])
print v.dot_product(R[1])
print v.dot_product(R[2])
                                                                          
  0
  0 
  0
 Thus v is orthogonal to row vectors of the coefficient matrix  .

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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[Remark] Hyperplane

 (1) Line of -plane: the solution set of a linear equation    , 
 ≠ 

 (2) Plane of -space: the solution set of a linear equation   
    ,  ≠ 

 (3) Hyperplane of ℝ : the solution set of    ⋯  , ∃ ≠ 

    (If   , then it is a hyperplane passing through the origin)

a⋅ x , a≠ 

    The set a⊥  x∈ℝ  a⋅ x  is called an orthogonal complement of a.
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Example 1 The following are all diagonal matrices.   and   are scalar matrices.

 


 


 

  
  











   
   
  

  








  

  
  

  


 


 

 

 and  are written as   diag   and   diag    .

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
G=diagonal_matrix([2, -1])          # generate diagonal matrix
H=diagonal_matrix([-3, -2, 1])      # diagonal_matrix([a1, a2, a3])
print G
print H
                                                                          

3.6  Reference video: http://youtu.be/daIxHJBHL_g, . http://youtu.be/jLh77sZOaM8     

 Practice site: http://matrix.skku.ac.kr/knou-knowls/CLA-Week-4-Sec-3-6.html 

Special matrices

We saw various properties of matrix operations. In this section, we 
introduce special matrices and consider some of their crucial 
properties.

 Diagonal matrix: A square matrix with the entries 0 except the main diagonal. A 
diagonal matrix  with its main diagonal entries   ⋯    can be written as
 diag  … 

diag  ⋯    













 ⋱


 Identity matrix: the matrix with its main diagonal entries all 1’s, denoted by 

 Scalar matrix:  

 














⋱



,    














⋱



http://youtu.be/daIxHJBHL_g
http://youtu.be/jLh77sZOaM8
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-4-Sec-3-6.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080


- 103 -

[ 2  0]          [-3  0  0]
[ 0 -1]          [ 0 -2  0]
                 [ 0  0  1]                                              ■

Example 2 Consider the following matrix.

If  








  

   
  

 and  











  
  
  

,  











  

     
  

.

For a general matrix     ×  ,   is obtained by multiplying each 
row of   by the corresponding entry of  , and   is obtained by 
multiplying each column of   by the corresponding entry of  ,

Furthermore, it satisfies the following.

  











  

  




  


,   








  

   
  

,    











  

 




  


 

In other words, the power of a diagonal matrix is the same as the 
diagonal matrix with the powers of the entries of the main diagonal.   □

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
D=diagonal_matrix([1, -3, 2])          # generating a diagonal matrix 
print "D^(-1)="
print D^(-1)
print
print "D^5="
print D^5
                                                                          
D^(-1)=
[   1    0    0]
[   0 -1/3    0]
[   0    0  1/2]

D^5=
[   1    0    0]
[   0 -243    0]
[   0    0   32]                                                         ■

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Definition  

If a square matrix   satisfies     ,   is called a symmetric matrix. 
If   , then   is called a skew-symmetric matrix.

Example 3 In the following matrices,   and   are symmetric matrices and   is a 
skew-symmetric matrix.

 








  

  
  

  








   

   
   

  








  

  
  

Ÿ http://matrix.skku.ac.kr/RPG_English/3-SO-Symmetric-M.html 

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix(3, 3, [1, 2, 3, 2, 4, 5, 3, 5, 6])
B=matrix(3, 3, [0, 1, -2, -1, 0, 3, 2, -3, 0])
print bool(A==A.transpose())              # Check if A symmetric
print bool(-B==B.transpose())             # Check if B anti-symmetric
                                                                          
True
True                                                                    ■

Example 4 If   is a square matrix, prove the following.
(1)    is a symmetric matrix.
(2)     is a skew-symmetric matrix.

Solution  (1) Since           ,    is 
           a symmetric matrix.

(2) Since          ,  is 
a skew-symmetric matrix.                                             ■

http://matrix.skku.ac.kr/RPG_English/3-SO-Symmetric-M.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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[Remark]

A given matrix can be written uniquely as a sum of a symmetric matrix and a 
skew-symmetric matrix.

Proof  For any given matrix   

 



 

 and 

 

 is a symmetric 

matrix and 

 

 is a skew-symmetric matrix.   ■

 Lower triangular matrix: A square matrix whose entries under the main diagonal 
are all zeros
 Upper triangular matrix: A square matrix whose entries above the main diagonal 

are all zeros

Example 5 In general, ×  triangular matrices are as follows.

     

   

Theorem  3.6.1 [Property of a triangular matrix]
Let  and  be a lower triangular matrix.
(1) ⋅   is a lower triangular matrix.
(2) If   is an invertible matrix, then     is a lower triangular matrix.
(3) If    for all , then the main diagonal entries of     is all 1’s. 

Example 6 Let   be a square matrix. If there exists an positive integer  such that
    (  is called nilpotent),   is invertible and    

 ⋯   . This is because

   ⋯                                     ■
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Chapter 3     Exercises

Ÿ http://matrix.skku.ac.kr/LA-Lab/index.htm 
Ÿ http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm 

T/F Problem    Indicate whether the statement is true (T) or false (F). Justify your 
answer.

(a) If three nonzero vectors form a linearly independent set, then each vector in 
the set can be expressed as a linear combination of the other two.

(b) The set of all linear combinations of two vectors  v and w in ℝ  is a plane. 

(c) If u cannot be expressed as a linear combination of v and w, then the three 
vectors are linearly independent.

(d) A set of vectors in ℝ  that contains is linearly dependent.

(e) If {v , v , v } is a linearly independent set, then so is the set {v , v , v } for 
every nonzero scalar  .

Problem 1  When  


 


 

  
  



 


   

   
  









 

  
 

, confirm the following. 

               .

Problem 2  When  


 


  

  
  



 


  

 
  



 


   

  
, confirm that   

and that ≠  .

Problem 3  When  


 


 

  
, compute the following.

                   

http://matrix.skku.ac.kr/LA-Lab/index.htm
http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm
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Problem 4  Show that   is the inverse of  . And confirm that        .

             








  

   
   

  








   

    
   

Problem 5  If    , show that       .

Problem 6  Find a × elementary matrix corresponding to each elementary 
operation. 

            (1)  ↔   
            (2)  → 

            (3)   →   

Problem 7  Using elementary operations, find the inverse of the following matrix.

            (1) 








  

  
  

     (2)  










   
   
   
   

 Solution   ⋮    = 










    ⋮    
    ⋮    
    ⋮    
    ⋮    

 → 











    ⋮    

  


 ⋮ 


 


 

    ⋮     

    ⋮ 


 









 → 

      











    ⋮ 


 


 





    ⋮ 


 


 




    ⋮ 







 


    ⋮ 


 








 =  ⋮   .      

















 









 


 















 






 









. ■
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Problem 8  Let  








  

  
  

 and   be any × matrix.

            (1) What is   and confirm how   affects on  .
            (2) What is   and confirm how   affects on  .

Problem 9  Determine if  is a subspace of ℝ .
                    

Problem 10  Determine if  is a subspace of ℝ .
                       

Problem 11  Find a vector equation and a parameterized equation of the subspace 
spanned by the following vectors.

           (a) v     , v     

           (b) v       , v       

Solution  (a)    ,    ,        where  ,  in ℝ.
       (b)    ,     ,    ,    ,    .   ■

Problem 12  Give a solution by finding the inverse of the coefficient matrix of the 
system.

           








    
    
    

Problem 13  Determine if the homogeneous system has a nontrivial solutoin.
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Problem 14  Check if the following matrix is invertible. If so, find its inverse by 
using a property of special matrices.

            








  

   
  

Problem 15  Find the product by using a property of special matrices. 

            










  

  




   









 

  
 









 

  


Problem 16  Determine     so that   is skew-symmetric matrix.

             








    

    
    

 P1  If  



 


 

 
 satisfies  ≠  and  

 , show that   can be expressed 

as follows.

            

 


 

 




 


 

 

            What is the value of ?

  Solution     


 


 

 


 


 

 





 


 

 
 =>    

            ∴       






                                  ■
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 P2  Let   be a square matrix. Explain why the following hold. 
            (1) If   contains a row or a column consisting of 0's,   is not 

invertible.
            (2) If   contains the same rows or columns,   is not invertible.
            (3) If   contains a row or column which is a scalar multiple of 

another row or column of  .

 P3  Let   be an × square matrix. Discuss what condition is need to 
have    ⇒    .

 P4  Find  ×  matrices  ,   and explain the relation with ERO. 

             


 


 

 
  



 


 

 

 P5  Decide if the following 4 vectors are linearly independent.
            v      , v      , v      , v      

 P6  If x b  and x c have a solution, prove that x  b  c  has a 
solution.

 P7  Suppose   is an invertible matrix of order . If v in ℝ  is 
perpendicular to every row of  , what is v? Justify your answer.

 P8  Prove that a necessary and sufficient condition for a diagonal matrix 
to be invertible is that there is no zero entry in the main diagonal.

 P9  If   is invertible and symmetric, so is    .

Solution        ,      and              . 
       =>        =>          =>     is symmetric.       ■
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Determinant

4
4.1 Definition and Properties of the Determinants
4.2 Cofactor Expansion and Applications of the Determinants 
4.3 Cramer's Rule
*4.4 Application of Determinant
4.5 Eigenvalues and Eigenvectors

Chapter
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The concept of determinant was introduced 150 
years before the use of modern matrix, and we 
have used the determinant to solve the 
systems of linear equations for over 100 years. 
In late 19th century, Sylvester introduced the 
concept of matrix and the method for solving 
systems of equations by using an inverse 
matrix, where the determinant is used to check 
if an inverse of a matrix exists or not. Also, 
the determinant can be used to find area, 
volume, equations of lines or planes, and 
exterior product. It also helps in geometric 
interpretation of vectors.

In this chapter, we first define the determinant 
and review its properties. Then we study how to compute the determinant by 
cofactor expansion. We also study Cramer's rule which solves the systems of 
linear equations by using the determinant. 

One of the most important concepts in linear algebra is  eigenvalues and 
eigenvectors. Eigenvalues have almost all important informations by  components 
from an object with   components. Eigenvalues are not only important in 
theoretical perspective but also applicable to almost all areas related to matrix, 
such as, finding the solutions of differential equations, computing the power of 
given matrix, Google search, and image compression, etc. In the last section of 
this chapter, we compute eigenvalues by using the determinant. 
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4.1  Reference video: http://youtu.be/DM-q2ZuQtI0, http://youtu.be/Vf8LlkKKHgg     

 Practice site: http://matrix.skku.ac.kr/knou-knowls/CLA-Week-5-Sec-4-1.html 

Definition of Determinant

In this section, we introduce a determinant function which assigns any 
square matrix  to a real number . In order to define the 
determinant function, we first introduce permutation. Then we review 
the  properties of the determinant function.

   

Definition  [Permutation]

For a set of natural numbers     …  , permutation is a one to 
one function from   to  .

 We simply denote a permutation as     ⋯    ⋯   . As a 
permutation  is an one to one correspondence, the range   …   is 
simply a rearrangement of   …  . Hence, there are  permutations on 
    ⋯  . We denote the set of all permutations of set   by  . 

  

   

      

                    

      …        

http://youtu.be/DM-q2ZuQtI0
http://youtu.be/Vf8LlkKKHgg
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-5-Sec-4-1.html
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Example 1 Determine whether it is even or odd permutation by computing the 
inversion numbers for a permutation        in  . 

Solution  The number of inversions for 5 is 4. The number of inversions 
for 1 is 0, for 2 is 0, for 4 is 1, and 3 is the last index. Hence, the total 
sum is       , and it is an odd permutation.             □
Ÿ http://matrix.skku.ac.kr/RPG_English/4-TF-Permutation.html 

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
Permutation([5,1,2,4,3]).inversions()           # inversions

[Remark]  Inversion

In permutation   ⋯   , an inversion is the case when a bigger natural 
number placed on the left hand side of a smaller natural number. For example, 
in a permutation    ,  is placed on the left hand side of , and hence 
  is an inversion. Similarly,   is an inversion. 

 Number of inversions for  : after ( )-th index, the number of indexes which 
is smaller than -th index  is called the number of inversions for . In the 
above example, the number of inversion for   is . Number of inversions for a 
permutation   ⋯    is the total sum of each number of inversions for , 
   ⋯  .

   

Definition  [Even permutation and odd permutation]

If number of inversions for a permutation is even than it is called an 
even permutation, If the number is odd than it is called an odd 
permutation.

http://matrix.skku.ac.kr/RPG_English/4-TF-Permutation.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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[[0, 1], [0, 2], [0, 3], [0, 4], [3, 4]]            # Note!! Index starts from 0
                                                                           
Permutation([5,1,2,4,3]).number_of_inversions()    # Number of inversions
                                                                          
5
                                                                           
Permutation([5,1,2,4,3]).is_even()  # check whether it is even permutation
                                                                          
False                                                                ■

Example 2 Classify the permutations of   to either even or odd permutation.

Solution

permuta

tions 

number of 

inversions
class sign

    even 

         even 

         even 

       odd 

       odd 

           odd 

                     ■

   

Definition  [Signature function]

Signature function sgn  →    , which assigns each permuta 
tion of   to either +1 or -1 as follows.

sgn       even permutation 
    odd permutation 

 In permutation, if two numbers switch the location then the signature is changed 
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Example 3 Find the det , where  



 


 

 
.

Solution

As   is ×  matrix,        . Since  
sgn  , sgn   , we have 
det   sgn    

   
 sgn   

   
    .   

                   

             https://en.wikipedia.org/wiki/Rule_of_Sarrus           ■

   

Theorem  4.1.1
Let   be a permutation by switching any two numbers from given 
permutation . Then 

sgn  sgn

   

Definition  [Determinant]  [Leibniz formula]

Let     be an × matrix. We denote the determinant of matrix 
  as det  or    and define it as follows.           

det  
∈ 

sgn     ⋯   

 By definition, × matrix    has it's determinant as det    .

 Each term sgn     ⋯     in the determinant is from the matrix  , by 
choosing a row and a column, without any overlapping, then multiplying them 
and assigning a corresponding signature. 

https://en.wikipedia.org/wiki/Rule_of_Sarrus
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Example 5 Compute the determinant of the following matrices. 

    


 


 

  
,  









  

   
   

.

Solution

    
  

      .

  


  
  

   
   




           .     □

Ÿ http://matrix.skku.ac.kr/RPG_English/4-B1-Det-matrix.html 

Example 4
Find the det , where  











  
  
  

.

Solution

As   is ×  matrix, 
                            
                                   . 

Since sgn   , sgn   , sgn   , sgn   , sgn   , 
     sgn   , 

by substituting them into the definition of the determinant, we have 

 det   sgn   
   

  
 sgn   

   
   

           ⋯  sgn    
   

  

                  

                    ■

http://matrix.skku.ac.kr/RPG_English/4-B1-Det-matrix.html
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Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
B=matrix(QQ, 3, 3, [1, 2, 3, -4, 5, 6, 7, -8, 9])
print B.det()                                   # compute the determinant
                                                                          
240                                                                     ■

Example 6
In Example 5 ,    , and   









   

   
  

. Since

     
   
   
  

          

[Remark] Sarrus' method cannot be applied to the case of degree 4 or higher.

Hence, the determinant with degree 4 or higher should be computed by the 
definition. But in that case, there are too many terms and signs to be 
determined. (Indeed, for degree 4 case, there are      terms, and for degree 
10, there are     terms to compute). Therefore, it is more effective 
to study the properties of the determinant and find the determinant by using 
these properties. (We will skip the proofs but will verify them by examples).

Properties of the determinant

   

Theorem  4.1.2
A square matrix   and its transpose matrix    have the same 
determinant.  

http://math.stackexchange.com/questions/123923/a-matrix-and-its-transpose-have-

the-same-set-of-eigenvalues 

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
http://math.stackexchange.com/questions/123923/a-matrix-and-its-transpose-have-the-%EE%84%81
http://math.stackexchange.com/questions/123923/a-matrix-and-its-transpose-have-the-%EE%84%81
http://math.stackexchange.com/questions/123923/a-matrix-and-its-transpose-have-the-%EE%84%81
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we have      .      □
Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

                                                                           
B=matrix(QQ, 3, 3, [1, 2, 3, -4, 5, 6, 7, -8, 9])
print B.transpose().det()     
                                                                          
240                                                                     ■

Example 7 Let  


 


  

 
and  



 


 

  
. Since    

 
   and   

  
 ,  

   .                                                          ■

Example 8
Let  









  

   
  

 which has identical first and third rows. Note

 The properties of the determinant regarding to rows also work to columns. 

   

Theorem  4.1.3
Let   be a matrix obtained by switching two rows (columns) from a 
square matrix   then     .

Proof   Let      be a matrix obtained by replacing  th and  th row of  
   ,    . This means    ,     and    if ≠  . 

      
∈ 

sgn            (by definition)

        
∈

sgn         

        
∈

sgn              

         
∈

sgn              (by theorem 4.1.1)

                                                                        ■

   

Theorem  4.1.4
If a square matrix   has two identical rows (columns) then   .

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix(QQ, 3, 3, [1, 2, 3, -1, 0, 7, 1, 2, 3])
print A.det()                                  # compute the determinant
                                                                          
0                                                                       ■

Example 10
Let  









  

  
  

. Note that

      
  
  
  

  
  
  
  

  
  
  
  

           ■

  

Theorem  4.1.5
If a square matrix   has a row (column) with identical zeros then 
  .

Example 9
Let  









  

  
  

 which has identical zeros in the third row. Observe 

      
  
  
  

       ×× ×× ×× ×× ×× ××      ■

   

Theorem  4.1.6
Let   be a matrix obtained by multiplying   times a row of a square 

matrix  . Then      .

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 11
Let  









  

   
  

 and 2 times of the second row is added to the first 

row and name it as matrix  . Then  

 








  

   
  










 ⋅      ⋅ 

   
  

. 

Note that        .                                              ■

   

Theorem  4.1.7
If a square matrix   has two proportional rows then   .

   

Theorem  4.1.8
Let   be a square matrix and   times of one row is added to another 
row of   and name this new matrix as  , then    .

Proof   Let   be a new matrix whose second row is obtained by adding   
times of the first row of   to  ∈  . 

    det  
∈

             

    det  
∈ 

          
∈

      

    =>  det  
∈

            (by Theorem 4.1.4)     ■

   

Theorem  4.1.9
If     is an × triangular matrix, the determinant of   equals 
the product of the diagonal elements. That is,  

   ⋯ 

Example 12
From the previous theorem,  

     
     
    
    
    

    . ■
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Example 13 Find the determinant of a matrix  , where

    








  

   
  

Solution

   
  
   
  

  
   
  
  

                     ↔ 

      
   
  
  

  

     
   
  
   

                                

     
   
  
   

                               

       
   
  
  

                                ■

[Remark] How to compute the determinant

1. Use elementary row operations to make many zeros to a certain row
   (column). 
2. Multiply the diagonal elements. 

※ Note that during the elementary row operations, if you multiply k times a 
row (column) or switch two rows (columns), do not forget to multiply 1/k and 
-1. 

   

Theorem  4.1.10
Let   be an  × elementary matrix. Then det  det det .
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Example 14 Verify the above theorem with matrices  


 


 

 
and  



 


  

 
.

Solution  Since  


 


 

 


 


  

 




 


 

 
, and 

     
 

        
 

       
 

 

         .                                          □

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix(QQ, 2, 2, [1, 2, 3, 4])
B=matrix(QQ, 2, 2, [2, -1, 1, 2])
C=A*B
print "det(AB)=", C.det()
print "det(A)*det(B)=", A.det()*B.det()
                                                                          
det(AB)= -10
det(A)*det(B)= -10                                                       ■

[Remark] The determinant of an elementary matrix

1. If   is obtained by multiplying   ≠  to a row of  , det    

2. If   is obtained by switching two rows of  , det    

3. If   is obtained by multiplying  times a row and adding it to another row
   of  , det    

4. If   is an × matrix and   is an elementary matrix,  
   det  det  ⋅ det.

 Equivalent conditions for invertible matrix

   

Theorem  4.1.11
  is invertible if and only if det ≠ .

   

Theorem  4.1.12
For any two  × matrices   and  ,        .

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 15 Verify the above Theorem with a matrix  


 


 

 
.

Solution   is invertible with   










  



 

 . Observe    ≠   and

    

  

  .                                                  □

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix(QQ, 2, 2, [1, 2, 3, 4])
Ai=A.inverse()
print "det(A)=", A.det()
print "det(A^(-1))=", Ai.det()
                                                                          
det(A)= -2
det(A^(-1))= -1/2                                                        ■

   

Theorem  4.1.13
If a square matrix  is invertible then     and      

 .

 [19th International Linear Algebra Conference(Sungkyunkwan University, 2014)] 
http://www.ilas2014.org/ 

Photos and Movie: http://matrix.skku.ac.kr/2014-Album/ILAS-2014/

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
http://www.ilas2014.org
http://matrix.skku.ac.kr/2014-Album/ILAS-2014
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Example 1
For given matrix  









   

  
  

, find the minor and cofactor of   for 

 .
Solution   The minor of   for   is   det     

 
  and the 

cofactor of A for   is        .            ■

4.2  Reference Video: http://youtu.be/XPCD0ZYoH5I, http://youtu.be/m6l2my6pSwY 

 Practice Site: http://matrix.skku.ac.kr/knou-knowls/CLA-Week-5-Sec-4-2.html 

Cofactor Expansion and Applications 

of the Determinants 

   

In this section, we introduce a method which is convenient to compute 
the determinant as well as important in theory. Moreover, by applying 
this method, we introduce an easier formula to compute the inverse of  
a matrix.

   

Definition  [Minor and cofactor]

We denote a submatrix, by removing the th row and  th column of a 
given square matrix    ,  as     . We call its determinant 
  det      as minor of   for . We also call   

              as cofactor of   for .

   

Definition  [Adjoint matrix]

Let   be a cofactor of  × matrix     for . The matrix   


is called an adjoint matrix of   and is denoted by adj . That is, 

adj 











  ⋯ 

  ⋯ ⋮ ⋮ ⋮
  ⋯ 













  ⋯ 

  ⋯ ⋮ ⋮ ⋮
 ⋯ 



    


http://youtu.be/XPCD0ZYoH5I
http://youtu.be/m6l2my6pSwY
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-5-Sec-4-2.html
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Example 2 Find adj  of the following matrix.

    








   

  
   

Solution

Note the cofactor of   for each element is as follows. 

            
  

         
  

 

       
  

          
  

 

       
  

          
 

 

        
 

         
 

 

        
 

 

   Therefore, adj 










     
    
    

                                  □  

Ÿ http://matrix.skku.ac.kr/RPG_English/4-MA-adjoint.html 

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix(QQ, 3, 3, [3, -2, 1, 5, 6, 2, 1, 0, -3])
print A.adjoint()                                       # adjoint matrix
                                                                          
[-18  -6 -10]
[ 17 -10  -1]
[ -6  -2  28]                                                           ■

Cofactor expansion

 The determinant of  × matrix  











  
  
  

can be expanded as follows. 

http://matrix.skku.ac.kr/RPG_English/4-MA-adjoint.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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                                      (Expand around the first column)

This is known as (Laplace) cofactor expansion of   around the first column. 

 Cofactor expansion works for any column and any row.   

 For any  × matrix    , the following identity holds. That is, 

   ⋅ adj 












  



 
  



 
  






  



 
  



 
  






  



 
  



 
  
















  
  
  

 ⋅   .

   Which shows  
  



      
 ≠ 

 . 

               Read:  http://nptel.ac.in/courses/122104018/node29.html 

   For the previous example Example 2 ,

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix(QQ, 3, 3, [3, -2, 1, 5, 6, 2, 1, 0, -3])
print "det(A)=", A.det()
print "A*adj(A)="
print A*A.adjoint()   
                                                                          
det(A)= -94
A*adj(A)=
[-94   0   0]
[  0 -94   0]
[  0   0 –94]                                                            ■

Therefore the following holds.

http://nptel.ac.in/courses/122104018/node29.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 3 Find the determinant of a given matrix by using the cofactor expansion.

    











    
    
   
   

Solution

Multiply (-2) to the 2nd row and add it to the 3rd row. Multiply (-3) to 
the 2nd row and add it to the both 1st and 4th row. Then

      
    
    
   
   

.

   Now we cofactor expand around the first column,

           
   
  
  

  

                 .                              ■

   

Theorem  4.2.1 [Cofactor expansion]
Let   be a  × matrix. For any     ( ≤   ≤ ) the following holds.

        ⋯     (cofactor expansion around th row)
     ⋯  (cofactor expansion around th column)

  When computing the determinant, it is advantageous to use the cofactor   
   expansion around the row (column) which has many zeros. 

   

Theorem  4.2.2 [Inverse matrix by using the adjoint matrix]
Let   be an  × invertible matrix, then the inverse matrix of   is 

   
 adj .
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Example 4 From Example 2 , find the inverse matrix of  .

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix(QQ, 3, 3, [3, -2, 1, 5, 6, 2, 1, 0, -3])
dA=A.det()                              # compute the determinant
adjA=A.adjoint()                        # compute adjoint matrix
print "(1/dA)*adjA="
print (1/dA)*adjA                       # compute inverse matrix
print 
print "A^(-1)="
print A.inverse()               # compare the results of inverse matrix 
                                                                          
(1/dA)*adjA=
[  9/47   3/47   5/47]
[-17/94   5/47   1/94]
[  3/47   1/47 -14/47]

A^(-1)=
[  9/47   3/47   5/47]
[-17/94   5/47   1/94]
[  3/47   1/47 -14/47]
[  3/47   1/47 –14/47]                                                 ■

[ATLAST project] http://www1.umassd.edu/SpecialPrograms/Atlast/ 

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
http://www1.umassd.edu/SpecialPrograms/Atlast
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4.3  Reference video: http://youtu.be/OImrmmWXuvU, http://youtu.be/m2NkOX7gE50 

 Practice site: http://matrix.skku.ac.kr/knou-knowls/CLA-Week-6-Sec-4-3.html 

Cramer's Rule

In this section, we introduce Cramer’s rule which is very useful tool for 
solving a system of linear equations.

 Cramer's rule can be applied to systems of linear equations with the same 
number of unknowns and the equations.  

   

Theorem  4.3.1 [Cramer's Rule]
For a system of linear equations, 

  ⋯  

  ⋯  

⋮ ⋮ ⋮ ⋮
  ⋯   

let   be a coefficient matrix, and x













⋮


 b 












⋮


. Then the system 

of linear equations can be written as x b . If   ≠ , the system of 
linear equations has a unique solution as follows:

  


   


 …    

  .

Where      ⋯   denotes the matrix   with  th column 
replaced by the vector b.

Proof  Since｜｜≠ ,  is invertible. Hence the system of linear equations  

x b  has a unique solution x   b . Since    
 adj , we have 

x












⋮


 
 adjb  













  ⋯ 

  ⋯ ⋮ ⋮ ⋮
  ⋯ ⋮ ⋮ ⋮
  ⋯ 












⋮


.

http://youtu.be/OImrmmWXuvU
http://youtu.be/m2NkOX7gE50
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-6-Sec-4-3.html
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Example 1 Solve the following system of linear equations by Cramer's rule.

          

      
      

Solution

Let   be the coefficient matrix. Then 

        
    
   

    
        

   
   

    
  

        
    
   

    
        

   
  

     
 , and hence

  ｜｜
｜｜



 
 ,  ｜｜

｜｜


 
 ,  ｜｜

｜｜


 
 .   ■

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A = matrix(3,3,[-2,3,-1,1,2,-1,-2,-1,1]);

A1 = matrix(3,3,[1, 3, -1,4, 2,-1,-3,-1,1]);

A2 = matrix(3,3,[-2,1, -1, 1,4,-1,-2,-3,1]);

A3 = matrix(3,3,[-2,3,1, 1, 2, 4, -2,-1,-3]);

print A.det()

print A1.det()

print A2.det()

print A3.det()

print "x =",  A1.det()/A.det()

        Observe the th component of x  is  

   ⋯  . Since 

  ⋯    ,

        if we denote  as a matrix   with  th column replaced by the vector b, 
        then we have

    

       ⋯  . ■

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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print "y =",  A2.det()/A.det()

print "z =",  A3.det()/A.det()

                                                                          
-2
-4
-6
-8
x = 2
y = 3
z = 4                                               ■

Example 2 Solve the following system of linear equations by Cramer's rule.

          

     
      

Solution

From Example 1   , and each matrix       has zeros column, 
          . Hence, the solution is z                  ■   
  

   

 

Theorem  4.3.2 [Equivalence Theorem for Invertible Matrix]
For an × matrix  , the following are equivalent.
(1) RREF  

(2)   is a product of elementary matrices.
(3)   is invertible.
(4)  is the unique solution to x  .
(5) x b  has a unique solution for any b ∈ℝ .
(6) The columns of   are linearly independent.
(7) The rows of   are linearly independent.
(8)   

 Note that there are more equivalent statements for the above theorem. For 
more equivalent statements, refer Theorem 7.4.9 in section 7.4.  
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Example 1 Show that the equation of a line, which passes through two distinct points 
   and   , is as follows.

    
  
  
  

 

Solution

Note that the above equation is degree 1 for both  and . As the 
equation holds by substituting        and        into the 
equation, the equation must be the equation of the line which passes 
through two given points. 

          ■

4.4  Reference video: http://youtu.be/OImrmmWXuvU, http://youtu.be/KtkOH5M3_Lc

 Practice site: http://matrix.skku.ac.kr/knou-knowls/CLA-Week-6-Sec-4-4.html 

*Application of Determinant

The concept of determinant was first introduced by Japanese Takakazu 
Seki-Kowa in 1683. The term determinant originated from the meaning of 
determining the existence of roots. It was Cauchy who used the term in 
modern concept in 1815. In this section, we introduce some geometric and 
algebraic applications among many other applications of the determinant.

 By using a determinant, we can easily find areas, volumes, equations of lines, 
equations of elliptic curves, or equations of plane. Also, the determinant of  
Vandermonde matrix connects between discrete data, which arise from 
statistical data and experimental labs, etc.

http://youtu.be/OImrmmWXuvU
http://youtu.be/KtkOH5M3_Lc
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-6-Sec-4-4.html
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[Remark] Computer simulation

  [An equation of a line which passes through two distinct points] 
  http://www.geogebratube.org/student/m9504

 Similar to Example 1 , an equation of a plane, which passes through three 
distinct points          and    , is as follows:

 
   
   
   
   

  .

http://www.geogebratube.org/student/m9504
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[Remark] Computer simulation

  [An equation of a plane which passes through three distinct points] 
  http://www.geogebratube.org/student/m56430

 Consider an arbitrary non-singular square matrix ∈ . Let    be the th 
column and

 
  




   ≤  ≤      ⋯  .

  For the case    is a parallelogram, and for the case  ≥  is a generalized 
parallelepiped. 

 Parallelogram can be expressed by adding two vectors as follows.

The area of the above parallelogram is     which is the same as the 

absolute value of   

 
. Similarly, a parallelepiped is generated by three vectors 

which do not lie on the same plane. Let matrix  's columns consist by these 
three vectors. Then the volume of the parallelepiped is absolute value of  det .

http://www.geogebratube.org/student/m56430
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[Remark] Computer simulation

  [Volume of parallelepiped]
  http://www.geogebratube.org/student/m57553

   

Theorem  4.4.1
(1) Let   be an ×  matrix. The area of parallelogram generated by 

two column vectors is det .
(2) Let   be an ×  matrix. The volume of parallelepiped generated by 

three column vectors is det.
(3) The area of parallelogram generated by two vectors u v∈  , is 

det  , where   u  v.

http://www.geogebratube.org/student/m57553
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Example 2 Show that the area of a triangle generated by three points   , 
  ,    is as follows.

   
 det











  

  

   
Solution

As the area is not changing by parallel translation, the area of triangle  
generated by three given vectors are the same as half of the area of 
parallelogram generated by        and       . Hence, 
by Theorem 4.1.1, we have

   
 det


 


     

        det










  

      
      

  det










  
  
  

.  ■

Proof  We will prove only (3).

       Note that u⋅ v  u vcos .
       Also, the area of parallelogram is u  vsin . Now, the determinant

             det   det

 


uu uv

vu vv  u v  uvvu
             u v  vu vu u v  u⋅ v

               u v  u vcos

            u v  cos u vsin  (square of base times height)

       makes the square of the area of the parallelogram generated by u v∈ . ■  
     

Vandermonde matrix and the determinants

 If there are  distinct points in the -plane with mutually distinct  
coordinates, then there exist a unique polynomial which passes through all 
given points with degree  . Let's find the polynomial.



- 138 -

 Let       ⋯     be  distinct points in the -plane with 
mutually distinct  coordinates. We want to find a polynomial of degree    
which passes through all given points. Let

     
 ⋯  

    be such a polynomial.

  Since these  points satisfy the given polynomial, we have 

                        
 ⋯   

    

               
 ⋯  

    

                           ⋮
               

 ⋯   
      .

  Moreover, as   ⋯    are mutually distinct, the coefficient matrix has 

 
  

 ⋯ 
  

  
 ⋯ 

  

⋮
  

 ⋯ 
  

≠   .

  This coefficient matrix   is called Vandermonde matrix with degree . Now we 
introduce how to compute the determinant of Vandermonde matrix. For the case
  ,

  det   
  



  


  


 det 
    

  
  


 

 


  
  
      

          

                          

         
          

 

                               

  ∴     
 ≤    ≤ 

  .

 Similarly, as we illustrated in the above case, the determinant of Vandermonde 
matrix   with degree  is product of    (with   ). That is,
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Example 3 Find a polynomial that passes through the points (39, 34), (99, 47), (38, 
58) by using a Vandermonde matrix.

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
def Vandermonde_matrix(x_list):          # generate Vandermonde matrix
    n=len(x_list)
    A=matrix(RDF, n, n, [[z^i for i in range(n)] for z in x_list])
    return A

x_list=[39, 99, 38]                           # x coordinate
V=Vandermonde_matrix(x_list)
y_list=vector([34, 47, 58])                    # y coordinate
print "V="
print V
print
print "x=", V.solve_right(y_list)
                                                                          
V=
[   1.0   39.0 1521.0]
[   1.0   99.0 9801.0]
[   1.0   38.0 1444.0]

x= (1558.34590164, -54.568579235, 0.396994535519)

                                                                           
p=0.396994535519*x^2 -54.568579235*x + 1558.34590164
plot(p, (x, -20, 120))               # plot the graph
                                                                          

         det   
   

 ⋯ 
  

  
 ⋯ 

  

⋮
  

 ⋯ 
  

 
 ≤    ≤ 

   .

 [Reference] http://www.proofwiki.org/wiki/Vandermonde_Determinant 

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
http://www.proofwiki.org/wiki/Vandermonde_Determinant
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                           ■

[Remark] Computer Simulation

[Curve Fitting]   http://www.geogebratube.org/student/m9911 
[Area of parallelogram]  http://www.geogebratube.org/student/m113  

  

[Solomon W. Golomb(Mathematics Magazine, March 1985)]

http://www.geogebratube.org/student/m9911
http://www.geogebratube.org/student/m113
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Example 1 Let  


 
 



  and x 






. Then x=


 
 

















 







 x. Hence 3 is 

an eigenvalue of  , and x 





 is an eigenvector corresponding to 3.  

■  

Example 2 Since x x, for any x∈  , the only eigenvalue of identity matrix   
is   . Also, any nonzero vector x∈   is an eigenvector of   
corresponding to 1.                                                     ■

4.5  Reference video: http://youtu.be/OImrmmWXuvU, http://youtu.be/96Brbkx1cQ4 

 Practice site: http://matrix.skku.ac.kr/knou-knowls/CLA-Week-6-Sec-4-5.html 

Eigenvalues and Eigenvectors

For an × matrix  and a vector x∈ , x is a vector in  . One 
of the important questions in applied problems is “Is there any nonzero 
vector x, which makes both x and x parallel?” If such a vector exists, 
then it is called an eigenvector and it plays many important roles in 
linear transformation. In this section, we introduce eigenvectors and 
eigenvalues.

   

Definition  [Eigenvalues and Eigenvectors]

Let   be an × matrix. For nonzero vector x∈  , if there exist a 
scalar  which satisfies  x x  , then  is called an eigenvalue of 
 , and x  is called an eigenvector of   corresponding to . 

 If x ∈   is an eigenvector of   corresponding to , then x  is also an 
eigenvector of   corresponding to  for any nonzero scalar .

x x  ⇒  x x x x.

http://youtu.be/OImrmmWXuvU
http://youtu.be/96Brbkx1cQ4
http://matrix.skku.ac.kr/knou-knowls/CLA-Week-6-Sec-4-5.html
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Example 3 Find all eigenvalues and corresponding eigenvectors of  


  
  



.

Solution

If x 










satisfies x x. Then,

   

  
  













 











 ⇔      

    
 ⇔       

      
     (1)

However, as mentioned above, this system of linear equations should 
have nontrivial (nonzero) solution. Hence,

      
       ⇔       ⇔     

∴      

① Let’s find an eigenvector corresponding to   .

   From (1),       
     

⇔   

   

   ∴ x 


 









 





 



 





∈ \ 

General method to find eigenvalues
  Since

x x  ⇔  x  x ⇔  x  

  and x≠  , the system of linear equations  x   should have nonzero 
solution. Therefore, the characteristic equation,      should hold. 
   is called the characteristic polynomial. 

   

Theorem  4.5.1
Let   be × matrix and  is a scalar, then the following statements 
are equivalent:  

(1)  is an eigenvalue of  .
(2)  is a solution of the characteristic equation det   .
(3) System of linear equations  x   has a nontrivial solution.
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② Let’s find an eigenvector corresponding to   .

   From (1),       
     

⇔       

   ∴ x 



 









 





 



 





∈ \                                   ■

[Remark] Computer simulation

  [Visualize the eigenvalues and eigenvectors]
  http://www.geogebratube.org/student/b73259#material/11114

 Do eigenvalues exist for any square matrix? 

   

Theorem  4.5.2 [Fundamental Theorem of Algebra]
For any real (or complex) coefficient polynomial with degree 

  
   

   ⋯ 

has  roots   …  , that is,    for   , on the complex 
plane.

http://www.geogebratube.org/student/b73259#material/11114
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Example 4 Find eigenvalues and eigenvectors of a matrix  


   
  



.

Ÿ http://matrix.skku.ac.kr/RPG_English/4-BN-char_ploy.html 

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

① Characteristic equation of 
                                                                           
A=matrix(QQ, 2, 2, [1, -3, -3, 1])    # input A 
print A.charpoly()                   # characteristic equation of A
                                                                          
x^2 - 2*x – 8

② Hence the eigenvalues are as follows.
                                                                           
solve(x^2 - 2*x - 8==0, x)
                                                                          
[x == -2, x == 4]

③ We can find the eigenvalues directly by using the built in command. 
                                                                           
A.eigenvalues()                # eigenvalues of A
                                                                          
[4, -2]

④ In order to find eigenvector for   , solve  x .
                                                                           
(-2*identity_matrix(2)-A).echelon_form() # consider only coefficient matrix
                                                                          
[ 1 -1]
[ 0  0]

 That is, a real square matrix   with degree  always has  eigenvalues in 
complex domain. However, in this textbook we have limited the scalar as real 
numbers, and hence there is no eigenvalues means there is no real eigenvalues.  

http://matrix.skku.ac.kr/RPG_English/4-BN-char_ploy.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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=>        ⇒   x 






 



 





 ∈ ∖

⑤ In order to find eigenvector for   , solve  x .
                                                                           
(4*identity_matrix(2)-A).echelon_form()  # consider only coefficient matrix
                                                                          
[ 1  1]
[ 0  0]

Hence,       ⇒   x 

 




 



 


 


  ∈∖

⑥ We can find the eigenvectors directly by using the built in command. 
                                                                           
A.eigenvectors_right()  
                                                                          
[(4, [(1, -1)], 1), (-2, [(1, 1)], 1)] 
# [eigenvalues, eigenvectors(it may appear in different form), multiplicity]  
         ■

Example 5
Find eigenvalues and eigenvectors of a matrix 




   
   
   




.

Ÿ http://matrix.skku.ac.kr/RPG_English/4-VT-eigenvalues.html  

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080

① Characteristic equation of    
                                                                           
A=matrix(QQ, 3, 3, [1, 2, 2, 1, 2, -1, 3, -3, 0])  # input A 
print A.charpoly()                          # characteristic equation of A
                                                                          
x^3 - 3*x^2 - 9*x + 27

② Hence the eigenvalues are as follows.
                                                                          

http://matrix.skku.ac.kr/RPG_English/4-VT-eigenvalues.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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solve(x^3 - 3*x^2 - 9*x + 27==0, x)
                                                                          
[x == -3, x == 3]

③ We can find the eigenvalues directly by using the built in command.  
                                                                           
A.eigenvalues()                # eigenvalues of A
                                                                          
[-3, 3, 3]                      # shows root with multiplicity 2

④ In order to find eigenvector for   , solve  x .
                                                                           
(-3*identity_matrix(3)-A).echelon_form() # consider only coefficient matrix
                                                                          
[   1    0  2/3]
[   0    1 -1/3]
[   0    0    0]

Hence,    
  


  

  

  

  ⇒   x




 







 











 



 ∈∖

⑤ In order to find eigenvector for   , solve  x .
                                                                           
(3*identity_matrix(3)-A).echelon_form()  # consider only coefficient matrix
                                                                          
[ 1 -1 -1]
[ 0  0  0]
[ 0  0  0]

Hence,           ⇒   x





 






 












 












 

            (  and  are real numbers not simultaneously become zero)

⑥ We can find the eigenvectors directly by using the built in command.
                                                                           
A.eigenvectors_right()  
                                                                          
[(-3, [(1, -1/2, -3/2)], 1), (3, [(1, 0, 1),(0, 1, -1)], 2)] 
#[eigenvalues, eigenvectors(it may appear in different form), multiplicity] 
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Example 6 Find the characteristic polynomial and all the eigenvalues of triangular 

matrix   








  

    
  

.

Solution

As det      ,  's eigenvalues are    .   ■

Example 7
From the given matrix   in Example 5 , find eigenspaces of   
corresponding to each eigenvalue   and  .

Solution

From the result of Example 5 , 

① if   , by solving  x  , we have

   
  


  

  

  

  ⇒   x




 







 











 



  ∈ 

                  
 For a triangular matrix     with degree , the main diagonal components 

of   are  (    … ). Therefore, the characteristic polynomial of 
is det       ⋯   , and hence the eigenvalues of the 
triangular matrix   are its main diagonal components,   …  . 

   

Definition  [Eigenspace]

Let  be an eigenvalue of × matrix  . Then the solution space of 
the system of linear equations  x   is called eigenspace of   
corresponding to .

 That is, an eigenspace of   corresponding to  is the set of all eigenvectors of 
  corresponding to  and the zero vector, which is a subspace of   .
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∴    










 





② When   , by solving  x  , we have

           ⇒   x





 






 














 













  ( , ∈)

∴    



























                                                  ■

http://matrix.skku.ac.kr/2009-Album/SKKU-Math-Card-F/SKKU-Math-Card-F.html

http://matrix.skku.ac.kr/2009-Album/SKKU-Math-Card-F/SKKU-Math-Card-F.html
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Chapter 4    Exercises

Ÿ http://matrix.skku.ac.kr/LA-Lab/index.htm 
Ÿ http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm 

Problem 1  Is permutation         of          even or odd?

Problem 2  Find the following determinants.

       (1) det   
   
   
  

           (2) det   
   
    
   
   

Problem 3   Let  be  × matrix and｜｜  , find the followings.

    (1)    

    (2)     

    (3)   

    (4)      

Problem 4  For given matrices, 

    








  

  
  

,  








  

  
  

    (1) show      .

    (2) show        .

http://matrix.skku.ac.kr/LA-Lab/index.htm
http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm
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    (3) show      
 . 

Problem 5  For which  and , the given matrix is invertible?

                        








  

  
  

Problem 6  For given matrices,

   










  
  

, 








  

  
  

    (1) show     .

    (2) show       .

    (3) show   

 . 

Problem 7  Find all cofactors of the following matrices.

    (1)  








  

   
  

    (2)  











    
    
       
    
      

Solution Sage :  
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A=matrix(QQ, 3, 3, [1, 1, 5, 0, 0, 0, 2, 6, 2])
print "adj A="
print A.adjoint()
B=matrix(QQ, 5, 5, [1, 2, 3, 4, 5, 0, 1, 0, 1, 0, -1, 1, -1, 1, -1, 0, 1, 2, 3, 4, -4, 2, -3, 1, 5])
print "adj B="
print B.adjoint()

 adj A=

[ 0 28  0]
[ 0 -8  0]
[ 0 -4  0]

adj B=
[-18  36 -18  18   0]
[ 14 -28  14 -14   0]
[ 22 -44  22 -22   0]
[-14  28 -14  14   0]
[ -4   8  -4   4   0] 

  ■

Problem 8  Find the determinant of the matrix by cofactor expansion.

                       











   

    
   
     

Problem 9  Find the adjoint matrix adj  of the matrix   from (Problem 8).

Problem 10  Find the inverse matrix of the given matrix by cofactor expansion.

                    (1)  








  

   
  

       (2)  











    
     
    
     
     

Solution   (2) Sage :      
 adj   

A = matrix(QQ, 5, 5, [1, 0, 1, 3, 5, -1, 3, 0, 7, 2, 1, 0, 2, 1, 8, 2, -4, 0, 0, 3, -8, 9, 2, 5, 4])
dA = A.det()
adjA = A.adjoint()
print "(1/dA)*adjA="
print (1/dA)*adjA 
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(1/dA)*adjA=
[ -18/133   23/133      2/7  -48/133  -29/133]
[  -30/19    13/19        1    -4/19    -4/19]
[ 999/133 -412/133    -27/7 -129/133   80/133]
[ 164/133  -47/133     -5/7   -6/133   13/133]
[-268/133  106/133      8/7   39/133  -18/133]

                                         ∴ 

































 




























 

























       ■

Problem 11  Solve the systems of linear equations by using the Cramer's rule. 

    (1) 








    
     
    

 

    (2) 









      
     
    
    

    (3) 










     

     

    
 

    (4) 










   

      

     

     

Problem 12  Solve the following problems by using the determinant of  
Vandermonde matrix.

  (1) Find the line equation which passes through the two points    and   .
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  (2) Find the coefficients    of parabolic equation       which passes 
through the three points     and  .

Problem 13  Solve the following problems by using the determinant.

  (1) The area of a parallelogram which is generated by two sides connecting the origin 
and

      each point   and  .

  (2) The volume of parallelepiped which is generated by three vectors,   
         and    .

Problem 14  Find the eigenvalues and eigenvectors of the following matrices.

                  (1)  


 


 

   
   (2)  











     
    
      
     

Solution  Sage :   ① det   

A = matrix(QQ, 4, 4, [-3, 0, -2, 8, 0, 1, 4, -2, -4, 10, -1, -2, 6, -4, -2, 3])
print "character polynomial of A ="
print A.charpoly()

character polynomial of A =
x^4 - 118*x^2 - 168*x + 1485

② Eigenvalues 

solve(x^4 - 118*x^2 - 168*x + 1485==0, x)

   x == 11, x == -9, x == -5, x == 3]

④ Let x1, x2, x3 and x4 be the above eigenvalues.
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A = matrix(QQ, 4, 4, [-3, 0, -2, 8, 0, 1, 4, -2, -4, 10, -1, -2, 6, -4, -2, 3])
x1 = 11
x2 = -9
x3 = -5
x4 = 3
print (x1*identity_matrix(4)-A).echelon_form()
print 
print (x2*identity_matrix(4)-A).echelon_form()
print 
print (x3*identity_matrix(4)-A).echelon_form()
print
print (x4*identity_matrix(4)-A).echelon_form()

[    1     0     0 -9/13]
[    0     1     0  7/13]
[    0     0     1 11/13]
[    0     0     0     0]
[ 1  0  0  2]
[ 0  1  0 -1]
[ 0  0  1  2]
[ 0  0  0  0]
[    1     0     0   7/5]
[    0     1     0   7/5]
[    0     0     1 -13/5]
[    0     0     0     0]
[ 1  0  0 -1]
[ 0  1  0 -1]
[ 0  0  1 -1]
[ 0  0  0  0]

⑤ Finding eigenvectors

A = matrix(QQ, 4, 4, [-3, 0, -2, 8, 0, 1, 4, -2, -4, 10, -1, -2, 6, -4, -2, 3])
print A.eigenvectors_right()

[(11, [(1, -7/9, -11/9, 13/9)], 1), (3, [(1, 1, 1, 1)], 1), (-5, [(1, 1, -13/7, -5/7)], 1), (-9, [(1, -1/2, 1, -1/2)], 
1)]

  ∴  Eigenvectors corresponding to =11, =-9, =-5, =3 are  x 












 
 


, 

x 












 

 

, x 














 
 

, x 
















.                                              ■

Problem P1  Explain why det     for the following matrix  .

                         








     

     
     

   Problem P2  Show that for two square matrices  and  , if       for an invertible 
matrix  , then      .

Solution                                    ■
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Problem P3  Simplify the following determinant.

    
   

   

   

Problem P4  For × matrix  , with  , show the following identity.

                      det adj det  

Problem P5  Let   be a × matrix, and assume that

   adj 











   
   
   
     

.

  (1) Find detadj. Which relation does this value have with det?
  

  (2) Find  .

Solution    Sage : 
adjA=matrix(QQ, 4, 4, [2, 0, 0, 0, 0, 2, 1, 0, 0, 4, 3, 2, 0, -2, -1, 2])
print adjA                     
print adjA.det()                            # |adj A|
B=(adjA.det())^(1/(4-1))                     # |A|^(n-1)=|adj A| 
print B
C=(1/B)*adjA                               # A^(-1)
print C
print C.inverse()                            # A
D=matrix(QQ, 4, 4,[1,  0 , 0 , 0, 0 , 4 ,-1 , 1, 0, -6,  2, -2, 0 , 1 , 0,  1])
print D.adjoint()                             # adj A 
 Answers :
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adjA=
[ 2  0  0  0]
[ 0  2  1  0]
[ 0  4  3  2]
[ 0 -2 –1  2]

det(adjA)=
8
det(A)=2

A^(-1)=
[   1    0    0    0]
[   0    1  1/2    0]
[   0    2  3/2    1]
[   0   -1 –1/2    1]

A=
[ 1  0  0  0]
[ 0  4 -1  1]
[ 0 -6  2 -2]
[ 0  1  0  1]

adjA=
[ 2  0  0  0]
[ 0  2  1  0]
[ 0  4  3  2]
[ 0 -2 –1  2]   

                                                                                  ■

Problem P6  By using the Cramer's rule, find the degree 3 polynomial 
        which passes through the following four points.

                                 

Solution    









  
      
      

     

 => 








     
     

    

Sage : 
A=matrix(3, 3, [1, 1, 1, 8, 4, 2, 27, 9, 3]) 
b=vector([-2, -2, 6])
Ai=A.inverse() 
print "x=", Ai*b
print
print "x=", A.solve_right(b)

  x= (1, -2, -1)
     =>                  ∴                            ■

Problem P7  Let the characteristic polynomial of matrix   be   . Find 
eigenvalues of matrix  . 

Problem P8  Find the eigenspaces of  


 


 

 
 corresponding to each eigenvalue and 

show that they are orthogonal to each other in the plane. 
   
Solution  The eigenspace of   corresponding to     is   =  


 
 



 .
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       The eigenspace of   corresponding to     is   =  





 . 

   Choose any y=  x  and y=x  from   and  , resp., then
         <y , y> =<  x , x>  =    xx  =    × ×  .  
       => y  and y  are orthogonal. 
    ∴    and   are orthogonal to each other in the plane.                         ■

Problem P9  Find the characteristic polynomial of the following matrix. And find the roots 
of the polynomial by using the Sage.
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Matrix Model

5
5.1 Lights out Game
5.2 Power Method
5.3 Linear Model (Google)

A mathematical model is a description of a system using mathematical 
concepts and language. The process of developing a mathematical model 
is called mathematical modeling. Mathematical models are used not only 
in the natural sciences (such as physics, biology, earth science, 
meteorology) and engineering disciplines (e.g. computer science, artificial 
intelligence), but also in the social sciences (such as economics, psychology, sociology and political 
science). Physicists, engineers, statisticians, operations research analysts and economists use 
mathematical models most extensively. A model may help to explain a system and to study the effects 
of different components and to make predictions about behaviour.
Mathematical models can take many forms, such as, dynamical systems, statistical models, differential 
equations, or game theoretic models. In this chapter, we illustrate linear models, which show how linear 
algebra can be used to solve the real world problems, and review the content from previous chapters.

http://matrix.skku.ac.kr/knou-knowls/cla-week-7.pdf 

        

Chapter

http://matrix.skku.ac.kr/knou-knowls/cla-week-7.pdf
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5.1  Reference video: http://youtu.be/_bS33Ifa29s   

 ractice site: http://matrix.skku.ac.kr/blackwhite2/blackwhite.html

http://matrix.skku.ac.kr/bljava/Test.html  http://matrix.skku.ac.kr/Big-LA/Blackout.htm 

*Lights Out Game

The Blackout(Lights Out, Merlin's Magic square) Game, introduced 
in the official homepage of the popular movie `A Beautiful Mind', is 
a one-person strategy game that has recently gained popularity on 
handheld computing devices. An animated Macromedia Flash 
version of the game can be found from the official website of the 
2001 movie `A Beautiful Mind'. In this section, we will introduce the 
question-and-answer process by one student that led to further 
development of this game, a purely linear algebraic solution and 
corresponding software.  

Background of The Lights Out Puzzle

In my recent linear algebra class, we discussed the movie 'A Beautiful Mind', 
starring Russell Crowe as Nobel Laureate John F. Nash, Jr. (2001) specifically the 
scene where Nash was playing the game “Go” with one of his friends. Some of my 
students told me that they played 'the Blackout Puzzle' on the Korean official 
website of the movie.
http://www.abeautifulmind.com/ 

     

Figure 1: Blackout Game

http://youtu.be/_bS33Ifa29s
http://matrix.skku.ac.kr/blackwhite2/blackwhite.html
http://matrix.skku.ac.kr/bljava/Test.html
http://matrix.skku.ac.kr/Big-LA/Blackout.htm
http://www.abeautifulmind.com
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One of my students asked me “Can we find an optimal solution for the game?” 
and, further,  “Is there any possibility that we can not win the game if the given 
setting is fixed?” After a couple of days, one of my young students approached me 
with a potential solution. Together, we constructed a mathematical model of the 
Blackout Game and, utilizing this model, we were able to determine a solution to 
the original questions. What we found was that we can, in fact, always win the 
game, based on basic knowledge of linear algebra. At that time, the references 
about this game were limited, so we developed our own methods; it is these 
methods and results that will be explored in this section. Later, the following 
website was set up to further explain the puzzle and solutions:
             (http://link.springer.com/article/10.1007/BF02896407 and

http://matrix.skku.ac.kr/sglee/album/2004-ICME10SPF/ICME-10-July04.htm).

Introduction of blackout puzzle

A Blackout board is a grid of any size. Each square takes one of two colors black 
or white. (The diagram on the website as in Figure 1 used blue and red.) The 
player takes a turn by choosing any square, and the selected square and all 
squares that share an edge with it change their colors. The object of the game is 
to get all squares on the grid (tile) to be the same color - Black or White. When 
you click on a tile, the highlighted tile icons will change or “flip'' from their 
current state to the opposite state. Remember, the goal is to change all of the tile 
icons to black (or white).

 

Figure 2: End of the Game (all squares having the same color)

How to solve any × game?

The following questions naturally come to mind:
[Q 1.]  Is there any possibility that we can not win the game if the given setting is 
fixed?

[Q 2.]  Given a winning pair   , how many solutions are there? When is the 
solution unique?

http://link.springer.com/article/10.1007/BF02896407andmatrix.skku.ac.kr/sglee/album/2004-ICME10SPF/ICME-10-July04.htm
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Figure 3  

[Q 3.]  Can we make a program to give us an optimal solution (shortest sequence 
of moves)?

Note that here are ××⋯×     patterns of × blackout grid. Among 
these 512 patterns, there are ×    patterns such that we can win the game 
with only one more click as follows. (Twice of the following basic 9 patterns as we 
can change all initial colors.)

 Adding some of the above to reach 








  

  
  

 or 








  

  
  

 (mod 2) is 

the goal of the game.

 We checked several examples 
through trial-and-error to convince 
us of the answer to the first 
question regarding any given initial 
condition. 
The figure 3 illustrates the shortest 
sequence of moves for resolving 
possible scenarios on a ×  board. 
Our approach to find a winning 
strategy was to recognize these 18 

patterns in Figure 3.
 Then, we tried to make a mathematical model of this game that the only actions 
we can perform are 9 clicks (since there are only 9 stones on the board).  We 
assumed “the white stone ≡  1 and black stone ≡  0”. Then, we  classified effects 
of each action as an addition of one vector (or × matrix). Any series of our 
actions results in a linear combination of these vectors. We used modular 2 
arithmetic to make the zero vector or all 1's vector (or matrix, resp.) to finish the 
game.

  








  

  
  

, 








  

  
  

, 








  

  
  

, 

  








  

  
  

, 








  

  
  

, 








  

  
  

, 
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, 








  

  
  

,








  

  
  

 Thus, we now have the 9 vectors as shown above (in fact, twice the amount of 
them) to consider, which will end the game with just one more click.  Assume the 
following initial condition, and the following 3 clicks make the entire board all 
white. Suppose we have 5 black(blue) stones and 4 white(red) stones in   the  
board as below.

  

 Then, the above condition can be denoted by the following matrix

 








  

  
  

.

 Now, we choose some of 9 positions to act on it. This can be represented by










  

  
  

 








  

  
  

 








  

  
  

 








  

  
  

 








  

  
  

 








  

  
  

 








  

  
  

 








  

  
  

 








  

  
  

thus our problem is to find some  and   such that 

         








  

  
  
 (1,1)

 








  

  
  

     (1,2)
 









  

  
  

     (1,3)
 









  

  
  

     (2,1)
 









  

  
  

     (2,2)

       
 









  

  
  

     (2,3)
 









  

  
  

     (3,1)










  

  
  

     (3,2)
 









  

  
  

     (3,3)









  

  
  



   Initial









  

  
  

Final Goal

    ⇒    








  

  
  

    (1,1)
 









  

  
  

     (1,2)
 









  

  
  

     (1,3)
 









  

  
  

     (2,1)
 









  

  
  

     (2,2)
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     (2,3)
 









  

  
  

     (3,1)










  

  
  

     (3,2)
 









  

  
  

    (3,3)










  

  
  

  Final Goal










  

  
  

 b
     Initial

 We now consider  ×  matrix  








  

  
  

 as a  ×   vector 





















, then the above 

linar system of equation can be written as 

x   b ⇒ 





















 





















 where  











        
        
        
        
        
        
        
        
        

 We can use any computational tool such as Sage and obtain 

 .

 Then we have a system of linear equations to find x          . x b is 
a given (condition) matrix and j  is a vector of all 1’s. Then  RREF    and 
rank  . So the columns (rows) are linearly independent, and the system has a 

unique solution x 






 








 


 




 
 




. Furthermore. this entire 

process can be done in Modular 2 arithmetic and x  = 
             . We only need 0 and 1 because clicking   times 

of one stone is the same as clicking once, and   clickings of one stone is the 
same as doing nothing.  So, our answer for x   b, which is a real optimal 
winning strategy vector (matrix) x ≡            mod , is 
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 .

 This shows that if we click on positions , we will get all white 
stones on the board with only 4 clicks. With this idea, one of my students made a 
computer program in C++ based on this algorithm to determine an optimal winning 
strategy. Let  x′≡ x  mod 2. Then x′  is a real optimal winning strategy  vector 
(matrix) which can be deduced from x. Now, entries of x′  are all  0 or 1 as is in 
real game situation and we can always find a (0,1) matrix as  a real optimal 
winning strategy vector(matrix). We can download this program and run it from 
http://matrix.skku.ac.kr/sglee/blackout_win.exe. This software also verified our 
conjecture and showed the proof was valid.
 In the following Figure, the command “(Wizard)” tells us “1 3 4 8,” which 
indicates which 4 stones we have to click to win. The number ''4'' shows we won 
with 4 clicks (MOVE).

  

 Teachers often think of "teaching" as a one-sided process, but this experience 
shows that teachers and creative students can work together to solve problems in 
a mathematically-stimulating, mutually beneficial way. This process can be adapted 
to resolve other real world problems using basic mathematical knowledge.

 After answering our posed questions for the Blackout Game, we looked toward 
finding a relationship between the Blackout Game and automata theory. We started 
to introduce the concept of sigma-game and find the optimal strategy to win the 
Blackout game, as well as a condition to determine the irreversibility of this game 
in  larger size boards- up to ×. We also verify our algorithm within a 
program made in C++.

 The sigma-game is played on a directed graph . We suppose that the vertices 

http://matrix.skku.ac.kr/sglee/blackout_win.exe
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of   can have one of two different states, which are designated as 0 or 1. A 
configuration is an assignment of states to all the vertices, and a move in the 
game consists of the player's picking a vertex. The Blackout Game emulates the 
sigma-game on the nine point directed graph. 

 We could classify the reversibility as a direct calculation of the ×  block 
tridiagonal matrix of the blackout game of size . In fact, for  ≤ , there are 
irreversible cases when   . Using Mathematica and our 
eigenvalue method, we can easily show the irreversibility. We could find a way to 
reach the goal even for some irreversible case if we give a restriction on the 
initial condition b. This complete our generalization of the Blackout game from 
× board to the full size Go board. Finally, the following Figure from our 
software shows our answer is accurate for larger size boards.

[A software of Blackout game on different 

sizes with 3 colors]
 We made a mathematical model from the well-known Blackout game. Surprisingly, 
it turned out to be a pure linear algebra problem of finding the optimal solution of 
the game, and we generalized it to the full size Go board. We gave a mathematical 
proof and algorithm to solve it which can be extended to the study of 
sigma-automata theory.

More details on the blackout game can be obtained from the following links.
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 http://matrix.skku.ac.kr/sglee/blackout_win.exe   
 http://matrix.skku.ac.kr/sglee/blackout_win.zip  
 http://matrix.skku.ac.kr/bljava/Test.html 
 http://matrix.skku.ac.kr/2012-mm/lectures-2012/A3-blackout-paper-ENG.pdf 
 http://matrix.skku.ac.kr/2009/2009-MathModeling/lectures/week12.pdf
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3D Printing object 2 

http://matrix.skku.ac.kr/2014-Album/2014-12-ICT-DIY/index.html 

http://matrix.skku.ac.kr/sglee/blackout_win.exe
http://matrix.skku.ac.kr/sglee/blackout_win.zip
http://matrix.skku.ac.kr/bljava/Test.html
http://matrix.skku.ac.kr/2012-mm/lectures-2012/A3-blackout-paper-ENG.pdf
http://matrix.skku.ac.kr/2009/2009-MathModeling/lectures/week12.pdf
http://www.abeautifulmind.com
http://matrix.skku.ac.kr/2014-Album/2014-12-ICT-DIY/index.html


- 167 -

5.2  Reference video: http://youtu.be/CLxjkZuNJXw  

 Practice site: http://matrix.skku.ac.kr/2012-LAwithSage/interact/ 

                http://math1.skku.ac.kr/home/pub/1516/ 

                http://matrix.skku.ac.kr/SOCW-Math-Modelling.htm

*Power Method

In many matrix models of social behavior, the corresponding 
maximum eigenvalue gives adequate information to predict the 
model.  Hence, often finding the maximum eigenvalue is enough to 
solve the corresponding problem. However, if the size of a matrix 
is significantly large, even with a computer, it is difficult to find all 
eigenvalues explicitly. Hence for a large scale matrix, we look at a 
new method which finds only the maximum eigenvalue instead of 
finding all the eigenvalues. This method, which harnesses the 
power of the matrix, is called “Power Method”. The first goal of 
this section is to explain how we can find the maximum eigenvalue 
numerically. The second goal is to show how this can be applied to 
the Google search engine.

We know that finding eigenvalues of an × real square matrix amounts to 
finding roots of its characteristic polynomial of degree .  However, for  large, 
finding the roots of -th degree polynomial is not an easy task. Also finding 
numerical roots for a large degree polynomial is sensitive to rounding off errors.  

In this article,  we discuss  numerical methods to approximate a largest or 
dominant eigenvalue of a matrix if exists. The dominant eigenvalues of a matrix 
have several  applications in science, engineering and economics. Google uses it 
for page ranking the web pages and Twitter uses it to recommend users 
“WHO-TO-FOLLOW” (WTF).

http://youtu.be/CLxjkZuNJXw
http://matrix.skku.ac.kr/2012-LAwithSage/interact
http://math1.skku.ac.kr/home/pub/1516
http://matrix.skku.ac.kr/SOCW-Math-Modelling.htm
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Definition  

 Let  …   be the eigenvalues of an × real matrix  . Then   is 
called a dominant eigenvalue of   if    for all    … . 
 
 The eigenvector corresponding to the dominant eigenvalue is called 
the dominant eigenvector.

[Remark] Note that not every matrix possesses a dominant eigenvalue. 
For example,  matrices



 


  

 









  

  
  

do not have dominant eigenvalues. 

Power Method

Let   be an × real matrix.  The power method is a numerical approach to 
find the dominant eigenvalue and the corresponding dominant eigenvector. We 
assume the following two conditions:

l The dominant eigenvalue is a real number and its absolute value is strictly  
greater than all the other eigenvalue.

l   is diagonalizable, in particular   has  linearly independent eigenvectors.

Let   have  linearly independent eigenvectors x … x  and eigenvalues are 
orders as 

   ≤  ≤ ⋯≤ 

Now we start with any nonzero vector x ∈ℝand we continually multiply x   by 
A which generates a sequence of vectors x  x  … x , where

x    x      …

This implies    x     x    ⋯  x  .

Since   has  linearly independent eigenvectors x … x , there exist scalars 
 … such that
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Example 1 Let us find the dominant eigenvalue and the corresponding eigenvector 

of  the matrix  


 


  

  
, starting with x  



 





.

Iteration 1.  We have 

x  


 





 y   x  



 


 

 
    x  



 





.

x   x  x ⋯ x

Multiplying both sides by  , we get

x    x   
  




x

 
  




x 





x 

  





 


x






Since    for all   , the ration 

  . Thus as → ∞ ,  

 → . Hence 





 → x .  

This leads to one of the very important method of finding the dominant eigenvalue 
and eigenvector, namely the “Power Method”.

While applying the power method algorithm, we make sure that the largest 
component each of x  is unity, in this case the component of x     x  will 
have largest component of absolute value of .

Power Method Algorithm

[Step 1] Select the a vector x   having largest component as 1. 
[Step 2] Set   .
[Step 3] Find y  x .
[Step 4] Define  to be largest component in absolute value in the vector x . 

[Step 5] Define x    

 y . 

[Step 6] Check if the convergence criteria is met. Otherwise 
[Step 7] Set      and go the the step 3. 
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Iteration 2. 

y   x  


 





    x  



 





.

Iteration 3. 

y   x  


 





    x  



 





.

Iteration 4. 

y   x  


 





    x  



 





.

Iteration 5. 

y   x  


 





    x  



 





.

Iteration 6. 

y   x  


 





    x  



 





.

Continuing this way the 10th iterate is 

y   x  


 





    x  



 





.

Clearly it means the dominant eigenvalue is approaching to 2 and the 

corresponding dominant eigenvector is approaching to 

 





.

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
from numpy import argmax,argmin
A=matrix([[4,-5],[2,-3]])
x0=vector([0.0,1.0]) # Initial guess of eigenvector
maxit=20 # Maximum number of iterates
dig=8 # number of decimal places to be shown is dig-1
tol=0.0001
 # Tolerance limit for difference of two consecutive eigenvectors 
err=1 # Initialization of tolerance
i=0
while(i<=maxit and err>=tol):
    y0=A*x0
    ymod=y0.apply_map(abs)
    imax=argmax(ymod)
    c1=y0[imax]
    x1=y0/c1
    err=norm(x0-x1)
    i=i+1

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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    x0=x1
    print "Iteration Number:", i-1
    print "y"+str(i-1)+"=",y0.n(digits=dig), "c"+str(i-1)+"=", c1.n(digits=dig), 
"x"+str(i)+"=",x0.n(digits=dig)
    print "n"
                                                                          
Iteration Number: 0
y0= (-5.0000000, -3.0000000) c0= -5.0000000 x1= (1.0000000, 0.60000000)
n
Iteration Number: 1
y1= (1.0000000, 0.20000000) c1= 1.0000000 x2= (1.0000000, 0.20000000)
n
Iteration Number: 2
y2= (3.0000000, 1.4000000) c2= 3.0000000 x3= (1.0000000, 0.46666667)
n
Iteration Number: 3
y3= (1.6666667, 0.60000000) c3= 1.6666667 x4= (1.0000000, 0.36000000)
n
Iteration Number: 4
y4= (2.2000000, 0.92000000) c4= 2.2000000 x5= (1.0000000, 0.41818182)
n
Iteration Number: 5
y5= (1.9090909, 0.74545455) c5= 1.9090909 x6= (1.0000000, 0.39047619)
n
Iteration Number: 6
y6= (2.0476190, 0.82857143) c6= 2.0476190 x7= (1.0000000, 0.40465116)
n
Iteration Number: 7
y7= (1.9767442, 0.78604651) c7= 1.9767442 x8= (1.0000000, 0.39764706)
n
Iteration Number: 8
y8= (2.0117647, 0.80705882) c8= 2.0117647 x9= (1.0000000, 0.40116959)
n
Iteration Number: 9
y9= (1.9941520, 0.79649123) c9= 1.9941520 x10= (1.0000000, 0.39941349)
n
Iteration Number: 10
y10= (2.0029326, 0.80175953) c10= 2.0029326 x11= (1.0000000, 0.40029283)
n
Iteration Number: 11
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y11= (1.9985359, 0.79912152) c11= 1.9985359 x12= (1.0000000, 0.39985348)
n
Iteration Number: 12
y12= (2.0007326, 0.80043956) c12= 2.0007326 x13= (1.0000000, 0.40007323)
n
Iteration Number: 13
y13= (1.9996338, 0.79978030) c13= 1.9996338 x14= (1.0000000, 0.39996338)
n
Iteration Number: 14
y14= (2.0001831, 0.80010987) c14= 2.0001831 x15= (1.0000000, 0.40001831)
n                                                                ■

Example 2 Let us find the dominant eigenvalue and the corresponding eigenvector 

of  the matrix  








   

   
   

, starting with x  











.

Iteration 1. We have 

x    y   x  













    x  















Iteration 2. y   x  













    x   

 y  













.

Iteration 3. y   x  













    x   

 y  













.

Iteration 4. y   x  













    x   

 y  













.

Continuing this, the 10th iterate is given by

y   x  













    x   

 y  













.

Clearly it means the dominant eigenvalue is approaching to 4 and the 

corresponding dominant eigenvector is approaching to 













.

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
from numpy import argmax, argmin
A=matrix([[1,-3,3],[3, -5, 3],[6,-6,4]])
x0=vector([1.0,1.0,1.0]) ## Initial guess

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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maxit=20 # Maximum number of iterates
dig=8 # number of decimal places to be shown is dig-1
tol=0.00001 
# Tolerance limit for difference of two consecutive eigenvectors 
err=1 # Initialization of tolerance
i=0
while(i<=n and err>=tol):
    y0=A*x0
    ymod=y0.apply_map(abs)
    imax=argmax(ymod)
    c1=y0[imax]
    x1=y0/c1
    err=norm(x0-x1)
    i=i+1
    x0=x1
    print "Iteration Number:", i-1
    print "y"+str(i-1)+"=",y0.n(digits=dig), "  c"+str(i-1)+"=", c1.n(digits=dig)
    print "x"+str(i)+"=",x0.n(digits=dig)
    print "n"
                                                                          

Example 3 Consider matrices  


 


 

 
  



 


  

 
  



 


 

 
.

Starting with arbitrary vector x   observe that for   convergence is 
obtained in fewer iterates, for   the convergence requires many more 
iterates where as for  there is no convergence.

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
Mat=['A','B','C']
from numpy import argmax,argmin
@interact
def _QRMethod(A1=input_box(default='[[1,2],[3,4]]', type = str, label = 

[Remark] 

The rate convergence of the power method is determined by the ration 

 . 

Smaller is the ratio better is the convergence. 

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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'A'),B1=input_box(default='[[1.7,-0.4],[0.15,2.2]]', type = str, label = 
'B'),C1=input_box(default='[[1,2],[-3,4]]', type = str, label = 
'C'),example=selector(Mat,buttons=True,label='Choose the 
Matrix'),maxit=slider(1, 500, 1, default=100, label="Maximum no. of 
i t era t i ons " ) , to l= input_box ( labe l= "To lerance " ,de fau l t=0 .001 ) ,v= 
input_box([0.1,1.0])):
    if(example=='A'):
        A1=sage_eval(A1)
        A=matrix(A1)
    elif(example=='B'):
        B1=sage_eval(B1)
        A=matrix(B1)
    elif(example=='C'):
        C1=sage_eval(C1)
        A=matrix(C1)
    x0=vector(v)
    html('A=%s,~~ x_0=%s'%(latex(A),latex(x0)))
    #html('x_0=%s'%latex(x0))
    #x0=vector([0.0,1.0])
    i=0
    err=1
    while(i<=maxit and err>=tol):
        y0=A*x0
        ymod=y0.apply_map(abs)
        imax=argmax(ymod)
        c1=y0[imax]
        x1=y0/c1
        err=norm(x0-x1)
        print "Iteration Number:", i+1
        html('y_i=%s,~~ c_i=%s~~ x_i=%s'%(latex(y0),latex(c1),latex(x0)))
        i=i+1
        x0=x1
    if(i==maxit+1):
        print 'Convergence is not achieved'
    else:
        print 'The number iteration required for tolerance=',tol,'is:',i
                                                                          

[Remark] nonzero smallest eigenvalue
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To find the non zero smallest eigenvalue of a matrix  , we can find the dominant 
eigenvalues of    .

[Remark] shifted power method
Note that if  is an eigenvalue of   then    is an eigenvalue of  . The 
rate of convergence of a power method can be significantly improved by using a 
shifted matrix   rather than   in the power method. This method is called 
the shifted power method.

Inverse Power Method

In case, a reasonably “good approximation” of an eigenvalue is known, then we 
can use the “inverse power method” to find an eigenvalue and the corresponding 
eigenvector.

Let   be an approximation to an eigenvalue   such that   ≪   for all 
    …  That is,   is much closer to   than to the other eigenvalues. Then we 
have the following algorithm

Inverse Power Method Algorithm

[Step 1] Select an initial estimate   sufficiently close to  .
[Step 2] Select the a vector x   whose largest entry is 1.
[Step 3] Set   . 
[Step 4] Solve   y  x  for y .
[Step 5] Define  to be largest component in absolute value in the vector x . 

[Step 6] Find    

 .

[Step 7] Define x    

 y . 

[Step 8] Check if the convergence criteria is met. Otherwise 
[Step 9] Set      and go the the step 4. 

In the above algorithm  converges to   and x   converges to the corresponding 
eigenvector.

The inverse power method is also know as inverse iteration with shift method.
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Example 4
Consider the matrix   









    

   
   

. Suppose    is an estimate 

of an eigenvalue of  . Apply the inverse power method to approximate

an eigenvalue of   starting with x  


 





.

Iteration 1. y      x  
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 y  










 


.

Iteration 2. y      x  
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 y  










 


.

Iteration 3. y      x  










 




      x   

 y  










 


.

Continuing this way, we have Iteration 10. 

y      x  










 




      x  










 


.

This mean an approximate eigenvalue is 2 and the corresponding 

eigenvector converges to 













.

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
from numpy import argmax, argmin
A=matrix([[10,-8,-4],[-8,13,5],[-4,4,4]])
Id=identity_matrix(3)
x0=vector([1.0,1.0,1.0]) ## Initial guess
maxit=20 # Maximum number of iterates

[Remark]
Note that the inverse power method is nothing but the power method applied to 
the matrix     .  This is why the name.  

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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dig=8 # number of decimal places to be shown is dig-1
tol=0.00001
# Tolerance limit for difference of two consecutive eigenvectors 
err=1 # Initialization of tolerance
sig=1.9 # Initial Shifting number
i=0
while(i<=n and err>=tol):
    y0=(A-sig*Id).inverse()*x0
    ymod=y0.apply_map(abs)
    imax=argmax(ymod)
    c1=y0[imax]
    d1=sig+1/c1
    x1=y0/c1
    print "Iteration Number:", i+1
    print "y"+str(i)+"=",y0.n(digits=dig), "d"+str(i)+"=", d1.n(digits=dig)
    print "x"+str(i+1)+"=",x0.n(digits=dig)
    print "n"
    i=i+1
    x0=x1
                                                                          

[Remark]
The advantage of the inverse power method with shift is that it can be adopted to
find any eigenvalue of a matrix, instead of the extreme ones. However, in order to 
compute a particular eigenvalue, we need to have an initial approximation that of 
that eigenvalue. 

Rayleigh Quotient

The Rayleigh quotient of a  non zero vectors x  with respect of a matrix is 
defines as

x xx
xx

If x  is an eigenvector with respect to the eigenvalue , then x  .

In general, for an arbitrary x, x is value that minimizes the function 
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Example 5 Apply the Rayleigh quotient iteration method to find an eigenvalue of the 

matrix  








    

   
   

 starting with initial approximate vector 

x  










 


.

Iteration 1. x  










 


and normalize x   to get

  ∥x x∥  over real number . 

The inverse power method can be significantly improved if we drop the restriction 
that the shift value   remains constant in all the iterates. 

Each iteration in the inverse power method gives and approximation of 
eigenvector, given an estimation of eigenvalue. On the other hand, the Rayleigh 
quotient gives an approximate eigenvalue, given as estimate of an eigenvector. 
Combining the two concepts together, we get a new variation in the inverse power 
algorithm in which the shift value   is updated in each iterate and it becomes the 
Rayleigh quotient of the eigenvector estimates. This method is called the Rayleigh 
quotient iteration method (RQI). 

Rayleigh Quotient Iteration Algorithm

[Step 1] Select the a vector x   with ∥x ∥ .
[Step 2] Define    x    x x  .
[Step 3] Set   . 
[Step 4] Define     x   x    x   .
[Step 5] Solve     y   x    for y .

[Step 6] Define x  ∥y∥
y

. 

[Step 7] Check if the convergence criteria is met. Otherwise 
[Step 8] Set      and go the the step 4. 

One of the main advantage of the RQI is that it converges much faster than  
power method and inverse power method. However, a very significant disadvantage 
of RQI is that its convergence is not always guaranteed except when the matrix is 
symmetric. 
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x  ∥x ∥
x 












 


.

Now    x  x  x   .  

Solving    y   x   for y   we get, y  










 

 

.

Hence x  ∥y ∥
y 












 

 

.

Iteration 2.    x  x  x   .  

Solving    y   x   for y   we get, y  










 


.

Hence x  ∥y ∥
y 












 


.

Iteration 3.    x  x  x   .
Solving    y   x   for y   and then we have 

x  ∥y ∥
y 












 

 

.

Iteration 4.      and x  










 

 

.

Clearly, in 4 iterates we are getting reasonably accurate eigenvalue 

   and the corresponding eigenvector 










 

 

.

Other Eigenvalues
We can use different initial vectors x   to get a different eigenvalues 
and the corresponding eigenvectors. 

For example if we use x  













, then after 4 iterates we have 

   , x  










 
 
 

.
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If we use x  










 
 

, then after 4 iterates we have

   ,  x  










 



.

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix([[10,-8,-4],[-8,13,5],[-4,5,4]])
Id=identity_matrix(3)
x0=vector([1.5,-2.5,5])
#x0=vector([1.0,0.0,0.0])
#x0=vector([1.0,-1,-1])
x0=x0/norm(x0)
maxit=20 # Maximum number of iterates
dig=8 # number of decimal places to be shown is dig-1
tol=0.00001 
# Tolerance limit for difference of two consecutive eigenvectors 
err=1 # Initialization of tolerance
i=0
while(i<=n and err>=tol):
    lam0=x0.dot_product(A*x0)
    y0=(A-lam0*Id).inverse()*x0
    x1=y0/norm(y0)
    print "Iteration Number:", i+1
    print "y"+str(i)+"=",y0.n(digits=dig), "lambda"+str(i)+"=", lam0.n(digits=dig)
    print "x"+str(i+1)+"=",x0.n(digits=dig)
    print "n"
    i=i+1
    x0=x1
                                                                          

QR Method

The QR method for finding eigenvalues and eigenvectors is a simultaneous 
iteration method that allows us to find all eigenvalues and eigenvectors of a real, 
symmetric full rank matrix at once. 

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 6
Consider  









  

  
  

. The actual eigenvalues of   are

13.1804689044, 3.56330346867, 1.25622762694. 
Now we apply the QR-method.

Iteration 1.         . We have 

The algorithm is simple:

l We start with     .
l Set    and find the QR factorization        . 
l Let        .

The sequence     has the following properties: for each ,     is orthogonally 
equivalent to       and hence is orthogonally equivalent to the original matrix  .

                 since         .

Similarly, 
              .

It can be shown that the sequence    converges (under certain conditions) to an 
upper triangular matrix or quasi-triangular matrix. In particular, the diagonal 
entries of     are eigenvalues.

If we define 



     ⋯  

Then the columns of   converges to unit eigenvectors of  .

Similarly we can define 



      ⋯     .

[Remark]  (i)  


  and  (ii)    .
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.

        








   

  
    

.

Iteration 2.         . We have 

   










   
    
  

.
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Iteration 3.         . We have 
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.

Continuing this iterations, in 20th iterate we have         . 
We have 

  











  ×  × 

 ×    × 

×  ×  

.
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×    

×  ×  

 .

Clearly, diagonal entries of     are close to actual eigenvalues of  .
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Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080
                                                                           
A=matrix(RDF, [[10,3,4],[3,5,1],[4,2,3]])
print "The actual eivenvalues of A are"
ev=A.eigenvalues()
show(ev)
n=10
for i in range(n):
    Q1,R1=A.QR()
    print "Iteration Number", i
    print "The matrix Q"+str(i), "is"
  
    show(Q1)
    print "The matrix R"+str(i), "is"
    show(R1)
    A1=R1*Q1
    print "The matrix A"+str(i), "is"
    show(A1)
    A=A1
                                                                          

[Remark]
QR method mentioned above usually is very expensive. This is why usually, 
symmetric matrices are first converted to tridiagonal matrix and then we apply QR 
method. For non-symmetric matrix, we convert it to an upper Hessenberg matric 
and then apply QR method.

              http://www.prenhall.com/bretscher1e/html/proj10.html

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
http://www.prenhall.com/bretscher1e/html/proj10.html
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5.3  Reference video: http://youtu.be/CLxjkZuNJXw  

 Practice site: http://matrix.skku.ac.kr/2012-LAwithSage/interact/ 

                http://math1.skku.ac.kr/home/pub/1516/ 

                http://matrix.skku.ac.kr/SOCW-Math-Modelling.htm

*Linear Model 

(1)  Linear Algebra behind Google

http://www.rose-hulman.edu/~bryan/googleFinalVersionFixed.pdf
by Kurt Bryan and Tanya Leise

 Google’s success derives in large part from its PageRank algorithm, which ranks 
the importance of webpages according to an eigenvector of a weighted link matrix. 
Analysis of the PageRank formula provides a wonderful applied topic for a linear 
algebra course. Instructors may assign this article as a project to students, or 
spend one or two lectures presenting the material with assigned homework from 
the exercises. This material also complements the discussion of Markov chains in 
matrix algebra. Maple and Mathematica files supporting this material can be found 
in http://www.rose-hulman.edu/~bryan/googleFinalVersionFixed.pdf.

A newsletter article '“Linear Algebra and Google Search Engine” - Pagerank 
algorithm' in Korean also can be found in 
      http://matrix.skku.ac.kr/2012-e-Books/KMS-News-LA-Google-SGLee.pdf.

http://youtu.be/CLxjkZuNJXw
http://matrix.skku.ac.kr/2012-LAwithSage/interact
http://math1.skku.ac.kr/home/pub/1516
http://matrix.skku.ac.kr/SOCW-Math-Modelling.htm
http://www.rose-hulman.edu/~bryan/googleFinalVersionFixed.pdf
http://www.rose-hulman.edu/~bryan/googleFinalVersionFixed.pdf
http://matrix.skku.ac.kr/2012-e-Books/KMS-News-LA-Google-SGLee.pdf
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(2) Sage Matrix Calculator for Linear Algebra

In this section, we introduce a matrix calculator. By utilizing a free 
open source tool Sage, one can intuitively understand almost all 
concepts in linear algebra. Also, one can study with visualization 
and large scale computation. Moreover, one can easily change and 
expand the size of a matrix. 

Sage Matrix Calculator
http://matrix.skku.ac.kr/2014-Album/MC.html

For over 20 years, the issue of using an adequate CAS tool in the teaching and 
learning of linear algebra has been raised constantly. A variety of CAS tools were 
introduced in many linear algebra textbooks; however, in Korea, due to some 
realistic problems, these tools have not been introduced in the class and the 
theoretical aspect of linear algebra has been the primary focus in Linear Algebra 
courses.

 In this section, we suggest Sage as an alternative for CAS tools  to overcome tthe 
problems mentioned above. As well, we introduce the extensive linear algebra 
content and a matrix calculator that was developed with Sage. Taking advantage of 
these novel tools, almost all concepts of linear algebra can be easily covered, and 
the size of matrices can be expanded without difficulty.

 The Sage Matrix Calculator uses the Sage Cell server. As shown in the following 
picture, it can do not only basic operations, such as matrix addition, subtraction, 
multiplication, scalar multiplication, but also can find determinant, rank, trace, 
nullity, eigenvalues, characteristic equation, inverse matrix, adjoint matrix, 
transpose of matrix, and conjugate transpose of a matrix. Also, unlike most 
web-based open matrix calculators, it can perform LU, SVD, and 
QR-decomposition, which are quite essential to  a well-rounded linear algebra 
education. By selecting the column size as 1, it can perform vector operations, 
such as inner product, cross product, and norm. As well, by using the column 
vectors of a matrix, it can perform Gram-Schmidt orthogonal process, and as a 
result, one can find the basis of a vector space generated by the matrix. As this 
matrix calculator can cover complex numbers, while many other matrix calculators 
can handle only real or rational numbers, it can solve almost all problems in 
linear algebra. In order to use the Sage matrix calculator, one needs only to 
connect to the given URL, or simply copy the codes from the given URL and paste 

http://matrix.skku.ac.kr/2014-Album/MC.html
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them to other Sage Cell server or a general Sage server's worksheet. Once it 
executed, decide the size of the matrix, enter the elements of the matrix, and then 
perform the desired matrix operations. 
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Visualization of Linear Algebra Concepts with GeoGebra

http://www.geogebratube.org/student/b121550

Vector addition http://www.geogebratube.org/student/m9493

Sclar multiplication http://www.geogebratube.org/student/m9494

L. S. of Equations http://www.geogebratube.org/student/m9704

Matrix product http://www.geogebratube.org/student/m12831

Areas http://www.geogebratube.org/student/m9497

Equations http://www.geogebratube.org/student/m9504

Curve Fitting http://www.geogebratube.org/student/m9911

Linear Transformation http://www.geogebratube.org/student/m9702

Projection http://www.geogebratube.org/student/m9910

LT (Shear) http://www.geogebratube.org/student/m9912

대칭변환 http://www.geogebratube.org/student/m9703

LT(similarity) http://www.geogebratube.org/student/m9705

Triangles http://www.geogebratube.org/student/11568

Projections http://www.geogebratube.org/student/m9503

Least Square solution http://www.geogebratube.org/student/m12933

http://matrix.skku.ac.kr/2012-Album/CLA-GeoGebra-Dynamic-Visual.htm

[References]

Sang-Gu LEE*, Kyung-Won KIM and Jae Hwa LEE,  Sage matrix calculator and full 
Sage contents for linear algebra, Korean J. Math. 20 (2013), No. 4, pp.  503-521.
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http://www.geogebratube.org/student/m9910
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Linear Transformations

6
6.1 Matrix as a Function (Transformation)
6.2 Geometric Meaning of Linear Transformations
6.3 Kernel and Range
6.4 Composition of Linear Transformations and Invertibility
6.5*Computer Graphics with Sage
Exercises

So far, we have considered matrix mainly as a coefficient 
matrix from systems of linear equations. Now, we consider 
matrix as a function. 

We have observed that the set of vectors and two 
operations reborn as an algebraic structure, namely a vector space. Matrix will be 
reborn as a linear transformation, which is a function that preserves the 
operations in a vector space. And linear transformations are used for noise 
filtering in signal processing and analysis in engineering processes. 

We show a linear transformation from -dimensional space ℝ  to -dimensional 
space ℝ  can be expressed as a × matrix  . We shall also look at geometric 
meaning of linear transformations from ℝ  to ℝ  and applications in computer 
graphics.

Chapter
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6.1  Reference video: http://youtu.be/YF6-ENHfI6E, http://youtu.be/Yr23NRSpSoM   

 Practice site: http://matrix.skku.ac.kr/knou-knowls/cla-week-8-Sec-6-1.html 

Matrix as a Function (Transformation)

Matrix can be considered as a special function with linearity property. 
Such a function play an important role in science and various areas in 
daily life, such as mathematics, physics, engineering control theory, 
image processing, sound signal, and computer graphics.

What is a Transformation?
 

   

Definition

A function, whose input and output are both vectors, is called a 
transformation. For a transformation   ℝ→ℝ , w  x is called 
an image of x  by , and x  is called a pre-image of w. 

As a special case of transformations,  x  x, for × matrix   
and x∈ℝ ,    ℝ→ℝ  is called a matrix transformation. 

  

   x ′  x  x











  

  

  

  















    
    
    
    
    



















http://youtu.be/YF6-ENHfI6E
http://youtu.be/Yr23NRSpSoM
http://matrix.skku.ac.kr/knou-knowls/cla-week-8-Sec-6-1.html
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Example 1 Show that  is a linear transformation if we define   ℝ→ℝ , for any 

vector x 

 





 in ℝ , as follows      

x 











 

[Remark] Computer simulation

 [Matrix transformation)
 http://www.geogebratube.org/student/b73259#material/22419

 

   

Definition

If a transformation   ℝ→ℝ  from ℝ  to ℝ , satisfies the 
following two conditions for any vectors u v ∈ℝ  and for any scalar 
∈ℝ, 

    (1) u v  u v           (2) u  u 

then  is called a linear transformation from ℝ  to ℝ .  Especially, 
a linear transformation from ℝ  to ℝ  itself,    ℝ→ℝ  is called a 
linear operator on ℝ .

http://www.geogebratube.org/student/b73259#material/22419
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Solution

For any two vectors u 



 





, v 




 





 in ℝ  and for any scalar ∈ℝ ,

 (1) u v  










 




  



  

   

             










  
  

      
















  
















  

             u v.

 (2) u  






 























  

 















  

 u.

Therefore, by definition,   is a linear transformation from ℝ  to ℝ . ■

Example 2 Let  ℝ → ℝ ,     . Show that T is a linear 
transformation.  

Solution

For any two vectors v      and 
v      in ℝ  and for any scalar ∈ℝ ,
 
  (1) v  v           

                       
                       v  v .
  
  (2) v     

                    v
 Therefore, T is a linear transformation.                                ■

Example 3
If we define   ℝ→ ℝ  as follows, show that  is not a linear 
transformation.

 This type of linear transformation is called orthogonal projection on -plane.
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.

Solution

For any two vectors, v 



 





, v 




 





 in ℝ ,

     v  v   










 




  



 

   


 


 

  
.

However, vv  





 





  


 

 









 

 









  

  




.

Hence v  v ≠ v v . 

Therefore, we conclude that   is not a linear transformation.         ■  

Example 4 Let  ℝ→ℝ  is defined as follows. Show  is a linear transformation.




























   
   















Solution

For any two vectors u













 v












 in ℝ  and for any scalar ∈ℝ ,

[Remark] Special Linear Transformations

 zero transformation: For any v∈ℝ , if we define   ℝ→ℝ  as v   , 
then  is a linear transformation. This is called a zero transformation. 

 identity transformation: For any v∈ℝ , if we define   ℝ→ℝ  as v  v, 
then  is a linear transformation. This is called an identity transformation.  

 matrix transformation: For any × matrix   and for any vector x  in ℝ , 
if we define  x  x, then   is a linear transformation from ℝ  to ℝ . 
This is called a matrix transformation.
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 (1) u v  

 


  

   











 
 
 




 


  

   











































     


 


  

   




















 


  

   















 uv

 (2) u  

 


  

   

















 


 


  

   

















 u

      and hence,  is a linear transformation.                         ■

Example 5
A linear transformation  from Example 1  is 





 











 










 

 
  



 





,

  is a matrix transformation for a matrix  








 

 
  

.              ■  

   

Theorem  6.1.1 [Properties of Linear Transformation]
If   ℝ → ℝ  is a linear transformation, then it satisfies the 
following conditions:

 (1)    . 
 (2)  v  v. 
 (3) u v  u v. 

Proof (1) Since ∀ v∈ v  ,   v  v   .
      (2)  v   v   v  v  
      (3) u v  u  v u  v  u v                    ■

 Each linear transformation  from ℝ  to ℝ  can be expressed as a matrix 
transformation. 

 Let   ℝ → ℝ  be any linear transformation. For elementary unit vectors, 
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e e …  e  of ℝ  and for any x∈ℝ , we have

x







⋮






 ee⋯e

 and as e , e , …  , e  are ×  matrix, we can write them as

e  







⋮






 e  







⋮






 …  e  







⋮






.

Therefore any linear transformation   ℝ →ℝ  can be expressed as 

  x  e  e  ⋯ e 

        







⋮














⋮






⋯







⋮












   ⋯ 

   ⋯ ⋮
  ⋯





  .            (1)

Now let   be an × matrix which has e , e , …  , e  as it's columns. 

  e   e  ⋯  e  






  ⋯ 
  ⋯ ⋮ ⋮ ⋯ ⋮
 ⋯ 






Then, 

x





  ⋯ 
  ⋯ ⋮ ⋮ ⋮ ⋮
 ⋯ 













⋮






 x.

The above matrix     ×   is called the standard matrix of  and is denoted 
by . Hence, the standard matrix of the linear transformation given by (1) can 
be found easily from the column vectors by substituting the elementary unit 
vectors to   in that order. 
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Example 6
For a linear transformation   ℝ → ℝ , 







































 

   



 

, by 

using the standard matrix of , rewrite it as x x.

Solution  Let  











  

    
  
  

, which columns are e, then x  x as 

 x 
































 

   



 











  

    
  
  



















 x.    □

   
Ÿ http://matrix.skku.ac.kr/RPG_English/6-MA-standard-matrix.html  

Sage  http://sage.skku.edu
                                                                           
x, y, z = var('x y z')
h(x, y, z) = [x+2*y, -x-y, z, x+z]
T = linear_transformation(QQ^3, QQ^4, h)  # define linear transformation,  
                                        # here scalar is rational numbers
C = T.matrix(side='right')                   # standard matrix
x0 = vector(QQ, [2, -3, 3])
print C
print T.domain()                           # domain
print T.codomain()                         # codomain
print T(x0)                                 # image
print C*x0                    # product of standard matrix and a vector
                                                                          

   

Theorem  6.1.2 [Standard Matrix]
 If   ℝ→ℝ  is a linear transformation, then the standard matrix  
   of T has the following relation for x∈ℝ .                       
      

x  x,  ∀ x∈ℝ

where   e   e  ⋯  e   .

http://matrix.skku.ac.kr/RPG_English/6-MA-standard-matrix.html
http://sage.skku.edu
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[ 1  2  0]
[-1 -1  0]
[ 0  0  1]
[ 1  0  1]
Vector space of dimension 3 over Rational Field
Vector space of dimension 4 over Rational Field
(-4, 1, 3, 5)
(-4, 1, 3, 5)                                                             ■

http://en.wikiquote.org/wiki/Georg_Cantor
Georg Ferdinand Ludwig Philipp Cantor (1845–1918) 

“The essence of mathematics lies 
entirely in its freedom.”
most famous as the creator of set 
theory, and of Cantor's theorem 
which implies the existence of an 
"infinity of infinities."

http://en.wikiquote.org/wiki/Georg_Cantor
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Example 1 [rotation, symmetry, orthogonal projection] We illustrate a few linear 
transformations on ℝ .

  (1)   ℝ→ ℝ  is a linear transformation which rotates a vector in 
ℝ  counterclockwise by   around the origin.  

      


 


cos  sinsin cos                                               

  (2) An orthogonal projection   ℝ→ℝ  on -axis is a linear 
     transformation.

     x  

 


 

 


 









 





                                           

6.2  Reference video: http://http://youtu.be/cgySDj-OVlM, http://youtu.be/12WP-cb6Ymc

 Practice site: http://matrix.skku.ac.kr/knou-knowls/cla-week-8-Sec-6-2.html  

Geometric Meaning of Linear Transformations

In this section, we study the geometric meaning of linear transformations. 
For a given image, continuous showing of series of images with small 
variations makes a motion picture. Linear transformation can be applied to 
computer graphics and numerical algorithms, and it is an essential tool 
for many areas such as animation. 

Linear Transformation from ℝ to ℝ  

 A linear transformation   ℝ→ℝ  defined by  




  

 


 

 
 moves a 

vector     to an another vector     . 

http://youtu.be/cgySDj-OVlM
http://youtu.be/12WP-cb6Ymc
http://matrix.skku.ac.kr/knou-knowls/cla-week-8-Sec-6-2.html
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  (3) A symmetric movement   ℝ→ℝ  around -axis is a linear 
transformation.

     x  

 


 

  


 









 




 
                                       ■

Ÿ http://matrix.skku.ac.kr/sglee/LT/11.swf 

Example 2 Find the standard matrix   for a linear transformation which moves a 
point   in ℝ  to a symmetric image around the given line. 
     (1) -axis                (2) line   

Solution

Symmetric (linear) transformation around -axis and the line    are 
given in the following figures.






  

 




,    





  







                       


  

 


,      



 
 



  .                     ■

Ÿ http://matrix.skku.ac.kr/sglee/LT/22.swf 
Ÿ http://matrix.skku.ac.kr/sglee/LT/44.swf 

http://matrix.skku.ac.kr/sglee/LT/11.swf
http://matrix.skku.ac.kr/sglee/LT/22.swf
http://matrix.skku.ac.kr/sglee/LT/44.swf
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Example 3 Linear transformation   ℝ → ℝ  which moves any vector x   
in ℝ  to a symmetric image around a line, which passes through the 
origin with angle   between the -axis and the line, can be expressed 
by the following matrix presentation   e   e  . 

      e   e  










cos cos

 

sin  sin

 




 


cos sinsin  cos        ■

Example 4 As shown in the picture, let us define an orthogonal projection as a 
linear transformation (linear operator)   ℝ→ ℝ  which maps any 
vector x  in ℝ  to the orthogonal projection on a line, which passes 

 [Remark] Simulation

[linear transformation]          http://www.geogebratube.org/student/m9703
[symmetric transformations and orthogonal projection transformations]           
                                 http://www.geogebratube.org/student/m9910 
[rotation]                        http://www.geogebratube.org/student/m9702   

In Example 3 , if   
 ,  



 


 

 
, i.e.     .

http://www.geogebratube.org/student/m9703
http://www.geogebratube.org/student/m9910
http://www.geogebratube.org/student/m9702
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through the origin with angle   between the -axis and the line. 
Let us denote the standard matrix correspond to  is  .

      x x 

x x   (the same direction with a half length)

      x 

x 

 x 

 x 


x 


  x

        

  












 cos  

 sin

 sin 


 cos 





 


cos sincos

sincos sin
 ■

   

In Example 4 , if   ,  


 


 

 
 is a projection onto the x-axis.

 [Remark]  shear transformations (computer simulation)

(1) 
 





→ 


 


 


: shear transformation along the -axis with scale 

(2) 
 





→ 


 




 
: shear transformation along the -axis with scale 

Ÿ http://www.geogebratube.org/student/m9912 

http://www.geogebratube.org/student/m9912
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Example 5 For any real number  ,  


 


cos  sinsin cos  is orthogonal matrix, and

   


 


cos sin

 sin cos .                                                ■

Example 6 Verify the following matrices are orthogonal matrix.

    












 









,  


































 



Solution

Verify    ,     by using the Sage.                        □
                      

   

Definition
, 

A linear transformation   ℝ →ℝ , which preserve the magnitude 
(or length of a vector), x  x, is called Euclidean isometry.

   

   

Theorem  6.2.1
For a linear operator   ℝ→ℝ , the following statements are 
equivalent:

 (1) x  x, x∈ℝ  (isometry).
 (2) x⋅ y  x⋅ y, x y∈ℝ  (preserve the inner product).

   

Definition

For a square matrix  , if       then   is called orthogonal matrix.
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Ÿ http://matrix.skku.ac.kr/RPG_English/6-TF-orthogonal-matrix.html 

Sage  http://sage.skku.edu
                                                                           
A=matrix(QQ, 2, 2, [3/5, -4/5, 4/5, 3/5])
B=matrix(3, 3, [1/sqrt(3), 1/sqrt(2), 1/sqrt(6),
               1/sqrt(3), -1/sqrt(2), 1/sqrt(6), 
               1/sqrt(3), 0, -2/sqrt(6)])
print A.transpose()*A                    # confirm the orthogonal matrix
print
print B.transpose()*B 
                                                                          
[1 0]       [1 0 0]
[0 1]       [0 1 0]
           [0 0 1]                                                      ■

   

Theorem  6.2.2
For any × matrix  , the following statements are hold:

 (1) The transpose of an orthogonal matrix is an orthogonal matrix.
 (2) The inverse of an orthogonal matrix is an orthogonal matrix.
 (3) The product of orthogonal matrices is an orthogonal matrix.
 (4) If   is an orthogonal matrix, then det   or  . 

Proof (1) and (2) are left as an exercise to the reader.
      (3) If       and      , then            

and hence   is an orthogonal matrix.
      (4) Observe that   det  det   det det   det  

∴ det   or   .                                                    ■

http://matrix.skku.ac.kr/RPG_English/6-TF-orthogonal-matrix.html
http://sage.skku.edu
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Theorem  6.2.3
For any × matrix  , the following statements are equivalent:

 (1)   is an orthogonal matrix.
 (2) x  x, x∈ℝ . 
 (3) x⋅ y x⋅ y, x y∈ℝ .
 (4) The row vectors of   are orthonormal.
 (5) The column vectors of   are orthonormal.

Proof (1) ⇒  (2):  x  x⋅ x   x x   xx x x  
                         x  x xx x x x⋅ x x  

      (2) ⇒  (3):  ∥x y∥ ∥xy∥  ∥x∥ x∙ y∥y∥

                                ∥x∥ x∙ y∥y∥

      and
                   ∥x y∥  ∥x y∥  ∥x∥ x∙ y∥y∥ .
      Hence x⋅ y x⋅ y . 

      (3) ⇒  (1):  ∀ , e
 e  e⋅ e  e e  e

e    
 ≠ 

                   ⇒                  ∴    

      We skip the detailed proof of (4) and (5) as we can get the result easily from 
the definition of the orthogonal matrix,        , and (1).           ■  

[The headquarter of American Mathematical Society, Providence, RI, USA]  
http://www.ams.org

http://www.ams.org
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Example 1 Find the ker for a linear transformation   ℝ→ ℝ where 
     .

Solution

ker   ∈ℝ｜        ∈ℝ｜  .            ■

Example 2 Find the ker for a linear transformation   ℝ→ℝ , where 
    .
Solution

For any x  ∈ℝ ,

6.3  Reference video: http://youtu.be/9YciT9Bb2B0, http://youtu.be/H-P4lDgruCc 

 Practice site: http://matrix.skku.ac.kr/knou-knowls/cla-week-8-Sec-6-3.html  

Kernel and Range

We will show that the subset of a domain ℝ , which maps to zero 
vector by a linear transformation, becomes a subspace. We will also 
show the set of images under any linear transformation forms a 
subspace in the co-domain. Finally, we introduce the concept of 
isomorphism.

   

Definition

Let   ℝ→ℝ  is a linear transformation. The set of all vectors in 
ℝ , whose image becomes   by  , is called kernel of  and is 
denoted by ker. That is, ker  v∈ℝ  v  .

   

http://youtu.be/9YciT9Bb2B0
http://youtu.be/H-P4lDgruCc
http://matrix.skku.ac.kr/knou-knowls/cla-week-8-Sec-6-3.html


- 205 -

            ⇔     ,   

and hence, ker     ∈ℝ.                                ■

Example 3 Let us define a linear transformation   ℝ→ℝ  as     . Is 
an one-to-one?
Solution

As ker  x∈ℝ  x            , the only 
element in this set is     . Hence ker   , and   is 
one-to-one.                                                             ■

   

Definition

For a transformation   ℝ → ℝ , if u  v ⇒ u v, then it 
is called one-to-one (injective).

   

Definition

For a transformation   ℝ → ℝ , if there exist v∈ℝ  for any 
given w∈ℝ , such that v  w,  then it is called onto (surjective). 

   

Theorem  6.3.1
Let ℝ and ℝ  are vector spaces and   ℝ→ℝ  is a linear 
transformation. Then  is one-to-one if and only if ker  .

Proof ⇒  As ∀ v∈ker, v    and   is one-to-one,
  ⇒  v    ∴ ker  

      ⇐  v   v  ⇒    v   v   v  v 

  ⇒  v  v ∈ ker  ⇒  v  v

      ∴   is one-to-one.                                                       ■
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Example 4 Is a linear transformation   ℝ→ℝ  one-to-one if it is defined as 
            ?

Solution

Since         ⇔  








    
   

    
 ⇔      

   
 ,

the system of linear equations has infinitely many solutions. Hence,  
ker≠  and by theorem 6.3.1,  is not one-to-one.      □           
          

Sage  http://sage.skku.edu

① verify linear transformations' one-to-one
                                                                           
U = QQ^3                              # vector space
x, y, z = var('x, y, z')
h(x, y, z) = [x+2*y-z, y+z, x+y-2*z]
T = linear_transformation(U, U, h)     # generate a linear transformation
print T.is_injective()                    # check the one-to-one
                                                                          
False

② Find Kernel of linear transformation
                                                                           
T.kernel()                              # verify by finding kernel
                                                                          
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[   1 –1/3  1/3]              # kernel = span( [1, -1/3, 1/3] ).    ■

 Let   be an × matrix. If we define a linear transformation   ℝ→ℝ  as 
x  x, then ker is a solution space of the system of linear equations
x .

http://sage.skku.edu
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Example 5 Find the kernel of a  


 


 

  
.

Sage  http://sage.skku.edu
                                                                           
A = matrix(2, 2, [1, 1, 1, -1])
print A.right_kernel()                          # kernel of A
                                                                          
Free module of degree 2 and rank 0 over Integer Ring
Echelon basis matrix:
[]                                      # kernel has only 0.            ■

Example 6 Find the range of the linear transformation      .

Solution

Im      ∈ℝ      ∈ℝ    ∈. 
Note that, Im ≠ ℝ  ⇒  is not surjective.                            ■

   

Theorem  6.3.2
Let ℝ ℝ  are vector spaces and   ℝ→ℝ  is a linear 
transformation. Then ker is a subspace of ℝ . Hence ker  is called 
kernel (subspace).

   

Definition  [Isomorphism]

For a linear transformation   ℝ→ℝ , the set of all v for 
v ∈ℝ , is called range of   and is denoted by Im.  That is,

Im  v∈ℝ  v∈ℝ ⊂ ℝ .

Especially, if Im  ℝ  then  is called surjective or onto. If a linear 
transformation   is one-to-one and onto, then    and   is called 
an isomorphism from ℝ  to ℝ .

   

http://sage.skku.edu
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Example 7 Let         ∈ℝ and          ∈ℝ. It 
is easy to see that both   and   are subspaces of   . If we define 
  →  as following linear transformation, 

        

then   is both one-to-one and onto, and hence it is isomorphism.    ■

Example 8 Let   be an × matrix, if we define a linear transformation 
  ℝ→ℝ  as x  x, then Im is a column space of  .

Solution

Let           ⋯      , that is,    be an × matrix  's th 
column vector. Then for any vector x   ⋯    ∈ℝ  ,

x      ⋯    













⋮


 
   

  ⋯
  .

That is, any image can be expressed as a linear combination of column 
vectors of  . 
∴  Im   x  x∈ℝ        …                           ■

   is not isomorphism as it is not surjective.

   

Theorem  6.3.3
For a linear transformation   ℝ→ℝ , Im is a subspace of ℝ .

Proof  ∀ w w∈ Im , ∃ v v∈ℝ  ∋  v   w v   w

       ⇒  w w v v   v  v 

       ⇒  ∃ v  v ∈ℝ  ∋  v  v   w w ∈ℝ   ∴  w w ∈ Im   

       ∀ ∈, w  v   v     
       ⇒  ∃ v ∈   ∋  v   w ∈ℝ     ∴  w ∈ Im  
      ∴ Im is a subspace of ℝ .                                       ■
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Example 9 Verify the following by using the Sage.

(1) Let  








 

 
 

.   ℝ→ℝ  is one-to-one but not onto.

Sage  http://sage.skku.edu

① define a linear transformation
                                                                           
U = QQ^2
V = QQ^3
A = matrix(QQ, [[1, 0], [0, 1], [0, 0]])
T = linear_transformation(U, V, A, side='right')   # linear transformation 
print T
                                                                          

   

Theorem  6.3.4
For a linear transformation   ℝ→ℝ  defined by a matrix 
    ×   satisfies the following two properties.  

 (1)   is one-to-one. ⇔  column vectors  of   are linearly 
independent.
 (2)   is onto. ⇔  row vectors of   are linearly independent.

Proof (1)   in one-to-one ⇔  ker  

  ⇔  There is a unique x  ∈ ℝ  which satisfies x .
  ⇔   column vectors of   are linearly independent.

      (2)   is onto ⇔  Im  ℝ

  ⇔  For  's column vectors   , 
     ℝ   Im   x  x∈ℝ        …     

  ⇔  In RREF , the number of leading ones is .
           ⇔  row rank of   is .

  ⇔   row vectors of   are linearly independent.              ■

http://sage.skku.edu
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Vector space morphism represented by the matrix:
[1 0 0]
[0 1 0]
Domain: Vector space of dimension 2 over Rational Field
Codomain: Vector space of dimension 3 over Rational Field

② check the surjectivity (onto)
                                                                           
print T.image()                # generate the range
print T.is_surjective()          # check the surjectivity (onto)
                                                                          
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[1 0 0]
[0 1 0]
False 

③ check the injectivity (one-to-one)
                                                                           
print T.kernel()                  # generate the kernel
print T.is_injective()             # check the injectivity (one-to-one)
                                                                          
Vector space of degree 2 and dimension 0 over Rational Field
Basis matrix:
[]
True

(2) Let  


 


  

  
.   ℝ→ℝ  is onto but not one-to-one. 

Sage  http://sage.skku.edu

① define a linear transformation
                                                                           
U = QQ^3
V = QQ^2
A = matrix(QQ, [[1, 0, 0], [0, 1, 0]])
T = linear_transformation(U, V, A, side='right')    # linear transformation 
print T

http://sage.skku.edu
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Vector space morphism represented by the matrix:
[1 0]
[0 1]
[0 0]
Domain: Vector space of dimension 3 over Rational Field
odomain: Vector space of dimension 2 over Rational Field

② check the surjectivity (onto)
                                                                           
print T.image()                # generate the range
print T.is_surjective()          # check the surjectivity (onto)
                                                                          
Vector space of degree 2 and dimension 2 over Rational Field
Basis matrix:
[1 0]
[0 1]
True

③ check the injectivity (one-to-one)
                                                                           
print T.kernel()                  # generate the kernel
print T.is_injective()             # check the injectivity (one-to-one)
                                                                          
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[0 0 1]
False                                                                 ■

   

Theorem  6.3.5
Let     ×   be an × matrix. If   ℝ→ℝ  is a linear 
transformation,   is one-to-one if and only if   is onto.

Proof   is one-to-one ⇔  ker  

                  ⇔  There is a unique x  ∈ ℝ  which satisfies x  .
                  ⇔  In  's RREF, number of leading ones is .
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                  ⇔  For  's column vectors   , 
                      Im  x  x∈ℝ        …     ℝ

                  ⇔  Im  ℝ  ⇔    is onto.                                  ■

Equivalence Theorem of Invertible Matrix

   

Theorem  6.3.6 [Equivalence Theorem of Invertible Matrix]
Let   be an × matrix, the following statements are all equivalent.

 (1) column vectors of   are linearly independent.
 (2) row vectors of   are linearly independent.
 (3) x    has only trivial solution x  .
 (4) For any ×  vector b, x  b has a unique solution. 
 (5)   and   are column equivalent. 
 (6)   is invertible.
 (7) det ≠ 

 (8)    is not an eigenvalue of  .
 (9)   is one-to-one.
 (10)   is onto.

[Ranking of International Math Olympiad 2012]
https://www.imo-official.org/results.aspx 

https://www.imo-official.org/results.aspx
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6.4  Reference video: http://youtu.be/EOlq4LouGao http://youtu.be/qfAmNsdlPxc  
 Practice site: http://matrix.skku.ac.kr/knou-knowls/cla-week-8-Sec-6-4.html 

Composition of Linear Transformations and Invertibility

In this section, we study the composition of  two or more linear 
transformations as continuous product of matrices. We also study the 
geometric properties of linear transformation by connecting inverse 
functions and inverse matrices. 

   

Theorem  6.4.1 [Composition of Functions]
If both   ℝ → ℝ and   ℝ →ℝ  are linear transformations, 
then the composition

 ∘   ℝ → ℝ

is also a linear transformation.

   

Theorem  6.4.2
For linear transformations   ℝ → ℝ and   ℝ→ ℝ ,
 (1)  ∘  is one-to-one implies  is one-to-one.
 (2)  ∘  is onto implies   is onto.

Proof  (1) If v  v, for vv ∈ ℝ , then   v     v . 
         ⇒   ∘ v    ∘ v  ⇒  v  v  (∵  ∘   is one-to-one)
          ∴  is one-to-one.

       (2) If  ∘  is onto, then for ∀ z∈ℝ , there exist v∈ℝ  such that 
 ∘ v  z . That is, there exist v∈ℝ  which satisfy v  z . Since 
v  w∈ℝ,  there exist w∈ℝ such that w  z .  

          ∴   is onto                                                        ■

http://youtu.be/EOlq4LouGao
http://youtu.be/qfAmNsdlPxc
http://matrix.skku.ac.kr/knou-knowls/cla-week-8-Sec-6-4.html
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Example 1
Let    ℝ → ℝ  are linear transformations which rotate   and 
(counterclockwise) respectively around the origin. The corresponding 
standard matrices are as follows.

 



 


cos  sinsin cos ,   




 


cos  sinsin cos  

As the composition of these two transformations rotates     around 
the origin,    ∘ 's standard matrix is as follows.

 



 


cos     sin    sin     cos   
.

Also the product of standard matrices of  and   are as follows.

 For the case of composition of two linear transformations, the corresponding 
standard matrix is the product of two standard matrices from each linear 
transformation.

 That is, let   ℝ→ ℝ,   ℝ → ℝ  and   ℝ →ℝ has a standard 
matrix ,   ℝ → ℝ  has standard matrix  . Then the linear 
transformation  ∘   ℝ → ℝ  has the standard matrix  ∘      . 

       

 Let the standard matrix of a linear transformation  be  . If an inverse 
transformation     exist, then the standard matrix of     is the inverse of the 
matrix  .
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cos  sinsin cos



 


cos  sinsin cos

                


 


coscos  sinsin  cossin  sincossincos  cossin  sinsin  coscos





 


cos     sin    sin     cos   
    ∘ .            ■

Example 2 As shown in the picture, find a matrix transformation which transform a 
circle with radius 1 to the given ellipse. 

Solution

First we find a transformation which expands 3 times around the -axis, 
and expands 2 times around the -axis. Then take a transformation 

which rotates 
  around the origin. The first transformation   is 

     , and hence the standard matrices for   and the 
rotation transformation   are

  


 
 



,    























.

Therefore, the standard matrix for the composition is the product of two 
standard matrices.

                























 
 























.           ■
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 [Remark]  Computer simulation

  [Matrix Transformation] http://www.geogebratube.org/student/m57556

 Similarly a composition of three or more linear transformations, the standard 
matrix of the composition is the product of each standard matrix in that 
operation order. 

   

Theorem  6.4.3
A function    →  is invertible if and only if  is one-to-one and 

onto.

   

Theorem  6.4.4
If a linear transformation   ℝ → ℝ  is invertible, then  
    ℝ → ℝ  is also a linear transformation.

 Inverse transformation of composition of transformation:  ∘      ∘   

                     ∘            

http://www.geogebratube.org/student/m57556
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 [Remark] Computer simulation

[shrink transformation and expand transformation] 
http://www.geogebratube.org/student/m11366 

“All human knowledge begins with intuitions, proceeds from 
thence to concepts, and ends with ideas.”                 

Immanuel Kant (1724-1804) is 
one of the most influential 
philosophers in the history of 
Western philosophy. His 
contributions to metaphysics, 
epistemology, ethics, and aesthetics 
have had a profound impact on 
almost every philosophical movement 
that followed him.

http://www.geogebratube.org/student/m11366
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6.5  Reference video: http://youtu.be/VV5zzeYipZs 

 Practice site: http://matrix.skku.ac.kr/Lab-Book/Sage-Lab-Manual-2.htm 

                http://matrix.skku.ac.kr/Big-LA/LA-Big-Book-CG.htm   

*Computer Graphics with Sage

Computer graphics plays a key role in automotive design, flight 
simulation, and game industry. For example, a 3 dimensional object,  
such as automobile, its data (coordinates of points) can be described as 
a matrix. If we transform the location of these points, we can redraw 
the transformed object from the points which are newly generated. If 
this transformation is linear, we can easily obtain the transformed data 
by matrix multiplication. In this section, we review several geometric 
transformations which are used in computer graphics.

Geometric meaning of Linear Transformation 1 
(Linear Transformation of Polygon’s Image)

 By using the Sage, draw a triangle with three vertices  ,  , and  , 
a triangle expanded twice, a figure by a shear transformation along the -axis 

with scale 1, and a triangle which is rotated counterclockwise by 
 . 

 First of all, in order to define the above linear transformations, we input the 
following linear transformations by using matrix. 
def matrix_transformation(A, L):

    n=matrix(L).nrows()    # list L’s number of elements

    L2=[[0,0] for i in range(n)]   # define a new list L2

    for i in range(n):

        L2[i]=list(A*vector(L[i]))   # L2=A*L

    return L2   # return L2 

print "The matrix_transformation function is activated"#confirm whether it is applied  

                    

 Then, we define appropriate standard matrices to fit the problems’ condition. 

http://youtu.be/VV5zzeYipZs
http://matrix.skku.ac.kr/Lab-Book/Sage-Lab-Manual-2.htm
http://matrix.skku.ac.kr/Big-LA/LA-Big-Book-CG.htm
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A=matrix([[2,0], [0,2]])   # Expanding twice of given image

B=matrix([[1,1], [0,1]])   # shear transformation along the -axis with scale 1 

C=matrix([[cos(pi/3), -sin(pi/3)], [sin(pi/3), cos(pi/3)]])

                          # rotate counterclockwise the given image by 


 

 Draw a triangle which has three vertices  ,  ,   by using ploygon.
L1=list( [ [0,0], [0,3], [3,0] ])   # input three vertices

SL1=polygon(L1, alpha=0.3, rgbcolor=(1,0,0))   # draw a polygon which passes  

                                                  through the given three points 

SL1.show(aspect_ratio=1, figsize=3)

 Draw a twice expanded triangle from the given triangle.  
L2=matrix_transformation(A, L1)  # find new three points by a linear transformation

SL2=polygon(L2, alpha=0.8, rgbcolor=(0,0,1))   # draw a polygon which passes 

                                                 through the given three points

SL2.show(aspect_ratio=1, figsize=3)

 Draw a shear transformed figure along the -axis with scale 1 from the given 
triangle.
L3=matrix_transformation(B, L1)  # find new three points by a linear transformation

SL3=polygon(L3, alpha=0.8, rgbcolor=(1,0,1))   # draw a figure which passes  

                                                 through the given three points

SL3.show(aspect_ratio=1, figsize=3)
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 Draw a figure which is rotated counterclockwise by 
  from the given triangle. 

L4=matrix_transformation(C, L1) # find new three points by a linear transformation

SL4=polygon(L4, alpha=0.4, rgbcolor=(0,0,1))   # draw a figure which passes 

                                                 through the given three points

SL4.show(aspect_ratio=1, figsize=3)

 Show the above four figures in the same frame. 

(SL1+SL2+SL3+SL4).show(aspect_ratio=1, figsize=3)
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Geometric meaning of Linear Transformation 2 
(Linear Transformation of Line’s Image)  

 Draw the alphabet letter S on the plane. Then draw figures which expands the 
original figure twice, sheer transforms along the -axis with scale 1, and 

rotates counterclockwise by  
 .

 First of all, in order to define the above linear transformations, we input the 
following linear transformations by using matrix.  

def matrix_transformation(A, L):

    n=matrix(L).nrows()    # list L’s number of elements

    L2=[[0,0] for i in range(n)]    # define a new list L2

    for i in range(n):

        L2[i]=list(A*vector(L[i]))    # L2=A*L

    return L2    # return L2 

print "The matrix_transformation function is activated"#confirm whether it is applied

 Then, we define appropriate standard matrices to fit the problems’ condition. 
A=matrix([[2,0], [0,2]])   # Expanding twice of given image

B=matrix([[1,1], [0,1]])   # shear transformation along the -axis with scale 1

C=matrix([[cos(pi/3), -sin(pi/3)], [sin(pi/3), cos(pi/3)]])

                          # rotate counterclockwise the given image by 


 

 Draw an alphabet letter S by using the line function. 
L1=list( [ [0,0], [4,4], [-3,12], [0,15], [3,12], [4,12], [0,16], [-4,12], [3,4], 

          [0,1], [-3,4], [-4,4], [0,0] ]) # input the data which compose letter S
SL1=line(L1, color="red")  # draw a figure which passes through the given points  

SL1.show(aspect_ratio=1, figsize=5)



- 222 -

 Draw a twice expanded letter S from the given figure.  
L2=matrix_transformation(A, L1)    # compute new points’ coordinates by a linear 

                                     transformation 

SL2=line(L2, color="purple") #draw a figure which passes through the given points

SL2.show(aspect_ratio=1, figsize=5)

 Draw a sheer transformed figure along the -axis with scale 1 from the given S. 
L3=matrix_transformation(B, L1)   # compute new points’ coordinates by a linear 

                                     transformation

SL3=line(L3, color="blue")  # draw a figure which passes through the given points

SL3.show(aspect_ratio=1, figsize=5)

 Draw a figure which is rotated counterclockwise by 
  from the given letter S.

L4=matrix_transformation(C, L1)   # compute new points’ coordinates by a linear 

                                     transformation

SL4=line(L4, color="green")  #draw a figure which passes through the given points

SL4.show(aspect_ratio=1, figsize=5)
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 Show the above four figures in the same frame. 

(SL1+SL2+SL3+SL4).show(aspect_ratio=1, figsize=5)

http://modular.math.washington.edu/
[William Stein : The first Sage developer]

[Sage developer group]

 [Sage code developers: Linear 
Algebra]

http://modular.math.washington.edu


- 224 -

Chapter 6    Exercises

Ÿ http://matrix.skku.ac.kr/LA-Lab/index.htm 
Ÿ http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm 

Problem 1  Verify that   ℝ →ℝ , where            , is 
a linear transformation and find x for x   .

Solution   The map   can be written as a matrix transformation, 





































  

  
  

















. So it is a linear transformation. (x)=
































  

  
  












 = 












. ■

Problem 2  Find the standard matrix  for             by using 
the standard basis. 

 

Problem 3  Let a linear transformation   ℝ → ℝ  satisfy the following conditions:
    ,      . 

(1) Evaluate   .

(2) Evaluate  .

Problem 4  Let   ℝ → ℝ  moves any x∈ℝ  to a symmetric image to a line which 

passes through the origin and has angle   
  between the line and the 

-axis. Find x for x 

 





. 

Problem 5  Check whether the given matrix is an orthogonal matrix. If that is the 
case, find the inverse matrix.

http://matrix.skku.ac.kr/LA-Lab/index.htm
http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm
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Solution     



















 



     















 


























 







 


 

 

  ∴   is an orthogonal matrix. And     



















 



 .     ■

Problem 6  For each given linear transformation, find the kernel and range. Also 
determine whether it is bijective or not.

(1)  






 


 


  

  
 

(2)  






 


 


 

   

Problem 7  Let   and   are defined as follows:
              ,
              .

(1) Find the standard matrix for each   and  . 

(2) Find the standard matrix for each  ∘   and  ∘  .

Problem 8  Let x z ∈ℝ  be moved by two linear transformations  and  , where

x  


 


  


, z  


 




   
. 

Find  ∘ x.

Solution      


 


 

 
,    



 


 

  
 =>  ∘   



 


 

  


 


 

 




 


 

  
.         ■

Problem 9  Answer the following questions.
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(1) Find the dimension of the null space of the following matrix by using the 
Sage.

    











      
       

       
       

(2) Let   be a linear transformation corresponding to the above matrix  . 
Determine whether w       is in the range of   by using the 
Sage.

Problem 10  Let   









  

  
  









cos sin sin  cos 

  









  

  
  

. Find  













 by using the 

Sage.
Solution  
var('t')
var('x0')
var('y0')
A=matrix(3,3,[1, 0, x0, 0, 1, y0, 0, 0, 1]);
B=matrix(3,3,[cos(t), -sin(t), 0, sin(t), cos(t), 0, 0, 0, 1]);
C=matrix(3,3,[1, 0, -x0, 0, 1, -y0, 0, 0, 1]);
D=A*B*C
print D
var('x')
var('y')
E=matrix(3,1,[x, y, 1]);
F=D*E
print F

[x*cos(t) - x0*cos(t) - y*sin(t) + y0*sin(t) + x0]
[x*sin(t) - x0*sin(t) + y*cos(t) - y0*cos(t) + y0]
[                                             1]
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Dimension and Subspaces

7
7.1 Properties of bases and dimensions
7.2 Basic spaces of matrix
7.3 Rank-Nullity theorem
7.4 Rank theorem
7.5 Projection theorem
*7.6 Lleast square solution
7.7 Gram-Schmidt orthonomalization process

                   7.8 QR-Decomposition; Householder transformations
                   7.9 Coordinate vectors
                   Exercises

The vector space ℝ  has a basis, and it is a key concept to understand the 
vector space.  In particular, a basis provides a tool to compare sizes of different 
vector spaces with infinitely many elements. By understanding the size and 
structure of a vector space, one can visualize the space and efficiently use the 
data sitting contained within it. 

In this chapter, we discuss bases and dimensions of vector spaces and then study 
their properties. We also study fundamental vector spaces associated with a matrix 
such as row space, column space, and nullspace, along with their properties. We 
then derive the Dimension Theorem describing the relationship between the 
dimensions of those spaces. In addition, the orthogonal projection of vectors in ℝ

Chapter
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will be generalized to vectors in ℝ , and we will study a standard matrix 
associated with an orthogonal projection which is a linear transformation. This 
matrix representation of an orthogonal projection will be used to study 
Gram-Schmidt Orthogonalization and QR-Factorization. 

It will be shown that there are many different bases for ℝ , but the number of 
elements in every basis for ℝ  is always . We also show that every nontrivial 
subspace of ℝ  has a basis, and study how to compute an orthogonal basis from 
the basis. Furthermore, we show how to represent a vector as a coordinate vector 
relative to a basis, which is not necessarily a standard basis, and find a matrix 
that maps a coordinate vector relative to a basis to a coordinator vector relative 
to another basis. 

[Mathematicians in a Dish]
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Example 1 (1) If  is the subset of ℝ  consisting of all the points on a line going 
through the origin, then any nonzero vector in   forms a basis for .

(2) If a subset   of ℝ  represents a plane going through the origin, 
then any two nonzero vectors in  that are not a scalar multiple of the 
other form a basis for  .                                              ■

         

7.1  Lecture Movie : http://youtu.be/or9c97J3Uk0, http://youtu.be/172stJmormk  
 Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-9-sec-7-1.html 

Properties of bases and dimensions

Having learned about standard bases, we will now discuss the concept of 
dimension of a vector space. Previously, we learned that an axis 
representing time can be added to the 3-dimensional physical space. We 
will now study the mathematical meaning of dimension. In this section, 
we define a basis and dimension of ℝ  using the concept of linear 
independence and study their properties.

Basis of a vector space

   

Definition  [Basis]

If a subset   v v … v of ℝ  satisfies the following two 
conditions, then   is called a basis for ℝ :

(1)   is linearly independent; and
(2) span   ℝ . 

   

http://youtu.be/or9c97J3Uk0
http://youtu.be/172stJmormk
http://matrix.skku.ac.kr/knou-knowls/cla-week-9-sec-7-1.html
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Example 2 Let   e e where e     e    . Since   is linearly 
independent and spans ℝ ,   is a basis for ℝ .                    ■

 In general   e e …  e is a basis for ℝ , and it is called the standard 
basis for ℝ .

How to show linear independence of vectors in ℝ? 

 Set of vectors x … x  in ℝ  is linear independent if 

x  x ⋯ x    ⇒      ⋯   

 Let    x  x  ⋯  x  where x's are column vectors and c   ⋯ 
 . If 

the homogeneous linear system c   has the unique solution c , then the 
columns of the matrix   are linearly independent. In particular, for  ,
det ≠   implies the linear independence of the columns of .

   

Theorem  7.1.1
The following  vectors in ℝ

x    …   … x    …  

are linearly independent if and only if

   
  ⋯ ⋮ ⋱ ⋮
  ⋯ 

≠ .

Proof  For  … ∈ ℝ , 
x  ⋯  x  
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Example 3 By Theorem 7.1.1,  the following three vectors in ℝ

x      x       x     

are linearly independent because    
   
  
  

  ≠  .□

Ÿ http://matrix.skku.ac.kr/RPG_English/7-TF-linearly-independent.html  

Sage풀이  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/
                                                                           
x1=vector([1, 2, 3])
x2=vector([-1, 0, 2])
x3=vector([3, 1, 1])
A=column_matrix([x1, x2, x3])       # Generating the matrix with x1, x2,  
                                      # x3 as its columns in that order
print A.det()
                                                                          
 9                                                                      ■

We can also use the inbuilt function of Sage to check if a set of vectors 

     ⇒ 













⋮


 













⋮


⋯ 













⋮














   ⋯ 

   ⋯ ⋮
   ⋯ 

 .

       This gives us the following linear system










  ⋯ 

  ⋯ ⋮ ⋮ ⋱ ⋮
  ⋯ 












⋮















⋮


.

       This linear system has the trivial solution …   , i.e.,  
   …     if and only if  ≠  . Therefore x …  x  are linearly 
independent if and only if  ≠  .                                      ■

http://matrix.skku.ac.kr/RPG_English/7-TF-linearly-independent.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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are linearly independent. 
                                                                           
V=RR^3;x1=vector([1, 2, 3]);x2=vector([-1, 0, 2]);x3=vector([3, 1, 1])
S=[x1, x2, x3]
V.linear_dependence(S)
                                                                          
 []             

Example 4 Show that   x x x with x     x     x     is 
a basis for ℝ .

Solution

To show that   x x x is a basis for ℝ , we need to show that   
is linearly independent and it spans ℝ .                           □

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/
                                                                           
A=matrix(QQ, 3, 3, [1, 1, 1, 0, 1, 1, 0, 0, 1])
print A.det()
                                                                          
1                                                                       ■

 Since the computed determinant above is not zero,   x x x is linearly 
independent. We now show that   spans ℝ . Let x      be a vector in 
ℝ . Consider a linear system x  x  x  x  in    . Note that if this 
linear system has a solution, then x      is spanned by  . The linear 
system can be written as 

                              ∈ℝ 

                              ,

   more explicitly, we have a linear system in    , 
      

    

  

(1)

  

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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  Hence we need to show that the linear system (1) has a solution to show that 

spans   . Indeed, the coefficient matrix 








  

  
  

 of the linear system (1) is 

invertible, so the linear system (1) has a solution. 

   

Theorem  7.1.2
Let   x x … x be a basis for ℝ . For    , any subset 
  y y … y  of ℝ  is linearly dependent. Therefore, if  is 
linearly independent, then    must be less than or equal to .

 
Proof  http://matrix.skku.ac.kr/CLAMC/chap7/Page6.htm 

Since   is a basis for ℝ , each vector in   y y … y  can be written 
as a linear combination of x x … x . That is, there are  ∈ℝ  such 
that

y  x x ⋯x  
  



x,     …   (2)

We now consider a formal equation with    …  ∈ℝ :

                
  



y  y  y ⋯ y  .

Then, from (2), we get,


  




  



 x  
  



 
  



x  

Since x x … x  are linearly independent,


  



    ∀     …  

Hence we get the following linear system

                     

  ⋯    

  ⋯    

⋮ ⋮
  ⋯    

(3)

 The homogeneous linear system (3) has   unknowns,   ⋯   , and  
linear equations. Since   , the linear system (3) must have a nontrivial 
solution. Therefore,   is linearly dependent.  ■

http://matrix.skku.ac.kr/CLAMC/chap7/Page6.htm
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Example 5 The determinant of the matrix having the vectors 
x      x     x     in ℝ  as its column vectors is

 
  
  

   
  ≠ . 

Hence   x x x is linearly independent. 
By Theorem 7.1.4,   is a basis for ℝ .                              ■

   

Theorem  7.1.3
If   x x … x and   y y … y are bases for ℝ , then 
  .

The proof of this theorem follows the theorem 7.1.2.

 There are infinitely many bases for ℝ . However, all the bases have the same 
number of vectors.

   

Definition  [Dimension]

If   is a basis for ℝ , then the number of vectors in   is called the 
dimension of ℝ  and is denoted by dim ℝ .

 Note that dimℝ  . If its subspace   is the trivial subspace, , then 
dim  . 

   

Theorem  7.1.4
For   x x … x ⊆ ℝ , the following holds:

 (1) If   is linearly independent, then   is a basis for ℝ .
 (2) If   spans ℝ  (i.e.,     ℝ ), then   is a basis for ℝ . 
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Theorem  7.1.5
If   v v … v is a basis for a subspace   of ℝ , then every 
vector v in   can be written as a unique linear combination of the 
vectors in  .

Proof  Since   spans  , a vector v in   can be written as a linear combination 
of the vectors in  . Suppose

v v  v ⋯ v and  v ′v  ′v ⋯ ′v. 

       By subtracting the second equation from the first one, we get 
   ′ v    ′ v ⋯   ′ v.

       Since  is linearly independent,   ′     ′   ⋯    ′  . 
       Therefore v v  v ⋯ v is unique.                        ■

[Remark] Many a times a basis of ℝ  is defined to a set which satisfies conditions 
of theorem 7.1.5.

Example 6
 Let   v     v     v     v    . Then
 

v     v v v v .

However, the vector v can also be written as follows:

v                

and
v                .

This is possible because   is not a basis for ℝ .          ■
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7.2   Lecture Movie : http://youtu.be/KDM0-kBjRoM, http://youtu.be/8P7cd-Eh328

  Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-9-sec-7-2.html 

Basic spaces of matrix

Associated with an × matrix  , there are four important vector 
spaces: row space, column space, nullspace, and eigenspace. These 
vector spaces are crucial to study the algebraic and geometric 
properties of the matrix   as well as the solution space of a linear 
system having   as its coefficient matrix. In this section, we study the 
relationship between the column space and the row space of   and 
how to find a basis for the nullspace of  . 

Eigenspace and null space

   

 Definition  [Solution space, Null space]

The eigenspace x∈   x x of an × matrix   associated to 
an eigenvalue  is a subspace of ℝ . The solution space of the 
homogeneous linear system x    is also a subspace of ℝ . This is 
also called the null space of   and denoted by  Null.

   

http://youtu.be/KDM0-kBjRoM
http://youtu.be/8P7cd-Eh328
http://matrix.skku.ac.kr/knou-knowls/cla-week-9-sec-7-2.html
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Basis and dimension of a solution space

 Let   be an × matrix. For given augmented matrix  ⋮  of a 
homogeneous linear system with x  , by the Gauss-Jordan Elimination, we can 
get its RREF  ⋮ . Suppose that matrix  has   ≤  ≤   nonzero rows.

 
  (1) If   , then the only solution to x   is x   . Hence the dimension of 
the solution space is zero.
  (2) If   , then with permitting column exchanges, we can transform   ⋮   

as

  ⋮   











   ⋯     ⋯    

   ⋯     ⋯    
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
   ⋯     ⋯    
   ⋯   ⋯   
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
   ⋯   ⋯   

.

  Then the linear system is equivalent to

                 ⋯    

                 ⋯    

⋮
                 ⋯    

  Here,        …   are   free variables. Hence, for any real numbers 
 …    , setting      …      , any solution can be written as a 
linear combination of   vectors as follows:

x 













⋮


  

  

  ⋮


 











    

    ⋮
    



⋮


 











    

    ⋮
    



⋮


⋯   











  

  ⋮
  


⋮



  
  Since  …     are arbitrary,
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Example 1 For the following matrix  , find a basis for the null space of   and the 
nullity of  .

     











   

      
    
    

Solution

The RREF of the augmented matrix  ⋮   for x   is











     
      
     
     

.

v 











    

    ⋮
    



⋮


 v 











    

    ⋮
    



⋮


 ⋯  v   











  

  ⋮
  


⋮



  are also solutions to the linear system. Hence, the previous linear combination 
of the   vectors can be written as  

x  v  v  ⋯    v   .

  This implies that  v v … v   spans the solution space of x   . In 
addition, it can be shown that   is linearly independent. Therefore   is a basis 
for the null space x∈ℝ  x   of   and the dimension of the null space is 
  .

   

 Definition  [Dimension of Null space]

For an × matrix  , the dimension of the solution space of x    
is called the nullity of   and denoted by nullity( ). That is, dim Null
( )nullity( ).
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Hence the general solution is

   x 































   



















   





 











 




 











 




 ∈ ℝ .

Therefore a basis and the dimension of the null space of   is

    




















 
















 












, nullity( )  2.                              ■

Example 2 Find a basis for the solution space of the following homogeneous linear 
system and its dimension.

     
       
        
       

Solution

Using Sage we can find the RREF of the coefficient matrix  :
                                                                           
A=matrix(ZZ, 3, 4, [4, 12, -7, 6, 1, 3, -2, 1, 3, 9, -2, 11])
print A.echelon_form()
                                                                          
[1 3 0 5]
[0 0 1 2]
[0 0 0 0]

Hence the linear system is equivalent to 

        

   

Since   and   are free variables, letting        for real numbers 
  , the solution can be written



- 240 -

   x 































   


 


 











 




 











 


 


.

Hence we get the following basis and nullity:

               , nullity( )       □

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

① Finding a basis for a null space
                                                                           
A=matrix(ZZ, 3, 4, [4, 12, -7, 6, 1, 3, -2, 1, 3, 9, -2, 11])
A.right_kernel()
                                                                          
Free module of degree 4 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1  3  4 -2]
[ 0  5  6 –3]

② Computation of nullity
                                                                           
A.right_nullity()
                                                                          
2                                                                       ■

 Definition 

For given × matrix  











  ⋯ 
  ⋯ ⋮ ⋮ ⋮
  ⋯ 

, the vectors obtained 

from the rows of    

     ⋯         ⋯  

Column space and row space
   

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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…       ⋯  

are called row vectors and the vectors obtained from the columns of 
  

  












⋮


   












⋮


 …    












⋮


are called column vectors. The subspace of ℝ  spanned by the row 
vectors  …   , that is,

   …  

is called the row space of   and denoted by Row  . The subspace 
of ℝ  spanned by the column vectors   …   , that is,

   …  

is called the column space of  , and denoted by Col. The 
dimension of the row space of   is called the row rank of  , and the 
dimension of the column space of   is called the column rank of  . 
The dimensions are denoted by    and  , respectively, that is,  
           

 dim Row     , dim Col    

      

   

Theorem  7.2.1
If two matrices    are row equivalent. then they have the same row 
space.     

Proof  
http://www.millersville.edu/~bikenaga/linear-algebra/matrix-subspaces/matrix-subsp
aces.html 

 Note that the nonzero rows in the RREF of   form a basis for the row space of 
 . The same result can be applied to the column space of  .

http://www.millersville.edu/~bikenaga/linear-algebra/matrix-subspaces/matrix-subsp
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Example 3 For the following set  , find a basis for     which is a subspace 
of ℝ :

                          

Solution

Note that the subspace   is equal to the row space of the following 
matrix

 











    
    
    
     

.

 By Theorem 7.2.1, it is also equal to the row space of the RREF of 

 











     
     
     
    

.

Therefore the collection of nonzero row vectors of 

                    

is a basis for  Row . 

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/
                                                                           
A=matrix(4, 5, [1, 2, 1, 3, 2, 3, 4, 9, 0, 7, 2, 3, 5, 1, 8, 2, 2, 8, -3, 5])
A.row_space()
                                                                          
Free module of degree 5 and rank 3 over Integer Ring
Echelon basis matrix:
[  1   0   7   0 -39]
[  0   1  -3   0  31]
[  0   0   0   1  -7]                                   ■

Example 4 Find a basis for the column space of  :

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Solution

The column space of  is equal to the row space of   











   
   
   
    
   

. 

By Theorem 7.2.1, it is also equal to the row space of the RREF of   :  

                            











    
   
   
   
   

. 

Therefore  
























 











































 is a basis for the column space of  .

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/
                                                                           
A=matrix(4, 5, [1, 2, 1, 3, 2, 3, 4, 9, 0, 7, 2, 3, 5, 1, 8, 2, 2, 8, -3, 5])
A.column_space()
                                                                          
Free module of degree 4 and rank 3 over Integer Ring
Echelon basis matrix:
[ 1  0  0 -1]
[ 0  1  0  1]
[ 0  0  1  0]                                                       ■

   

Theorem  7.2.2
For     ×  , the column rank and the row rank of   are equal. 

For the proof of theorem 7.2.2, see http://mtts.org.in//expository-articles 

 The same number for the column rank and the row rank of   is called the 
rank of  , and denoted by 

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
http://mtts.org.in//expository-articles
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Example 5 For a ≠ ∈ℝ , a⊥   …  ∈ℝ   ⋯   is a 
hyperplane of ℝ . It is easy to see that a⊥  is a subspace of ℝ .     ■

Example 6 (1) If a  ∈ℝ . Then
 a⊥    ∈ℝ           ∈ℝ

is a line in the plane passing through the origin perpendicular to the 
vector  .
(2) Let a   ∈ℝ . Then 

a⊥      ∈ℝ      

is the plane in ℝ  passing through the origin and perpendicular to the 
vector   . ■

      rank 

[Remark] Relationship between vector spaces associated with a matrix 

Ÿ Row   Col( ), Col(  )=Row(, 

Ÿ Row( )⊥ Null( ), Null( )⊥ Row( ),

Ÿ Col( )⊥ Null(   ), Null(   )⊥ Col( )
http://linear.ups.edu/html/section-CRS.html 

[International Linear Algebra Society]  http://www.ilasic.org/ 

http://linear.ups.edu/html/section-CRS.html
http://www.ilasic.org
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7.3  Lecture Movie: http://youtu.be/ez7_JYRGsb4, http://youtu.be/bM-Pze0suqo 

 Lab: http://matrix.skku.ac.kr/knou-knowls/cla-week-9-sec-7-3.html 

Dimension theorem (Rank-Nullity Theorem)

In Section 7.2, we have studied the vector spaces associated to a matrix 
 . In this section, we study the relationship between the size of matrix 
  and the dimensions of the associated vector spaces.   

Rank

   

 Definition  [rank]

The rank of a matrix   is defined to be the column rank (or the row 
rank) and denoted by rank  .

   
 Let   be an × matrix. If   RREF , then   can be written as the 

following: 

Hence rank( )  and nullity( )  .

   

Theorem  7.3.1 [Rank-Nullity theorem]
For any     ×  , we have

rank( )  nullity( ) 

For the proof of theorem 7.3.1, see http://linear.ups.edu/html/section-IVLT.html 

 The Rank-Nullity Theorem can be written as follows in terms of a linear 
transformation: If ∈ ×   is the standard matrix for a linear transformation 

http://youtu.be/ez7_JYRGsb4
http://youtu.be/bM-Pze0suqo
http://matrix.skku.ac.kr/knou-knowls/cla-week-9-sec-7-3.html
http://linear.ups.edu/html/section-IVLT.html
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Example 1
The RREF of  











    
    
    
     

 is  











     
     
     
    

. Hence rank( )

 . Since   , the dimension of the solution space for x    is 
equal to nullity( )    .                                      ■

Example 2 Compute the rank and nullity of the matrix  , where

 











     

      
    
    

.

Solution

The RREF of   can be computed as follows 
                                                                           
A = matrix(ZZ, 4, 5, [1, -2, 1, 1, 2, -1, 3, 0, 2, -1, 0, 1, 1, 3, 4, 1, 2, 5, 
13, 5])
A.echelon_form()
                                                                          
[1 0 3 7 0]
[0 1 1 3 0]
[0 0 0 0 1]
[0 0 0 0 0]

Hence rank( ) , and by Theorem 7.3.1,  
nullity   rank      .         ■

  ℝ→ ℝ , then

dim Im   rank, dim ker   nullity .

Hence
dim Im dim ker  dim    .
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Ÿ http://matrix.skku.ac.kr/RPG_English/7-B2-rank-nullity.html 

Sage  http://sage.skku.edu
                                                                           
print A.rank()                   # rank computation 
print A.right_nullity()            # nullity computation
                                                                          
3
2                                                                       ■

 

   

Theorem  7.3.2
A linear system x  b has a solution if and only if 

rank   rank ⋮ b .

Proof  Let     ×  , x    …  , b    …  . Then the linear 
system x  b  can be written as














⋮


 












⋮


 ⋯ 












⋮















⋮


. (1)

       Hence we have the following:

x  b has a solution. ⇔  There exist   …   satisfying the linear system (1).
                        ⇔  b  is a linear combination of the columns of  .
                        ⇔  b ∈Col  
                        ⇔  rank  rank ⋮ b .                            ■

http://matrix.skku.ac.kr/RPG_English/7-B2-rank-nullity.html
http://sage.skku.edu
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Example 3
The linear system 

    
    
    

 has its matrix-vector representation 









   

  
  

























. 

                                                                           
A = matrix(ZZ, 3, 3, [1, -2, 2, 1, 4, 3, 2, 2, 5])
b = vector([1, 2, 3])
print A.rank()                      # rank(A)
print A.augment(b).rank()            # rank[A : b]
                                                                          
2
2

Since rank    rank  ⋮ b  , Theorem 7.3.2 implies that the linear 
system has a solution.                                             ■

   

Definition  [Hyperplane]

Let a∈ℝ  be a nonzero vector. Then 
   a⊥  x∈   a⋅ x  is called the orthogonal complement of a . 
(This can be understood as the solution space of a⋅ x xa .) The 
orthogonal complement of a is a hyperplane of ℝ .

 Note that dim a⊥ nullity(a ) .

   

Theorem  7.3.3
Let be a    dimensional subspace of ℝ . Then  a⊥  for some 
nonzero vector a∈  .

Proof  Since dim  , by the Rank-Nullity Theorem, dim ⊥  . Thus 
        ⊥  spana for a nonzero vector a. Therefore

        ⊥ ⊥  spana⊥  a⊥ .                                         ■
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7.4  Lecture Movie :  http://youtu.be/8P7cd-Eh328  http://youtu.be/bM-Pze0suqo  

  Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-9-sec-7-4.html 

Rank theorem 

In this section, we study the relationship between the rank of a matrix 
  and the theorems that is related to the dimension of subspaces 
associated to  .

   

Theorem  7.4.1 [Rank theorem]
For any     ×  , dim Row( )dim Col( ).

Proof

http://ocw.mit.edu/courses/mathematics/18-701-algebra-i-fall-2010/study-materials
/MIT18_701F10_rrk_crk.pdf                 ■

   

Theorem  7.4.2
For any     ×  , rank( ) ≤ min { }.

Proof  Since dim Row( ) ≤ , dim Col( ) ≤ , and rank( )=dim Row( )dim Col
( ), it follows that rank( ) ≤ min { }                                 ■

   

Theorem  7.4.3 [Rank theorem]
Given     ×  , the followings hold: 

(1) dim Row( )dim Null( )  the number of columns of  (that is, 
rank( )nullity( )).
(2) dim Col( )dim Null(  )the number of rows of  (that is, rank( )
nullity(  )).

Proof  (1) follows from Theorem 7.3.1, 
       (2) follows from the fact that Row  Col  and rankrank   

http://youtu.be/8P7cd-Eh328
http://youtu.be/bM-Pze0suqo
http://matrix.skku.ac.kr/knou-knowls/cla-week-9-sec-7-4.html
http://ocw.mit.edu/courses/mathematics/18-701-algebra-i-fall-2010/study-materials
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Example 1 Find the rank and nullity of the following matrix:

    








   

    
      

Solution

Using Gaussian Elimination,

   








   

    
      

 
 

  
  









   

      
   

                      
 

 
 











   
   

   


 

                      



      











   

   


   

                      
  
 











    

   


   

REF( ).

 Hence rank    and the Rank-Nullity Theorem gives  rank 

     nullity. 
Sage  http://sage.skku.edu

                                                                           
A=matrix(3, 4, [1, 3, 1, 7, 2, 3, -1, 9, -1, -2, 0, -5])
print A.rank()                   # rank computation 

along with replacing   in (1) by   .                       ■

   

Theorem  7.4.4
For a square matrix   of order ,   is invertible if and only if

rank( ).

Proof  If   is invertible, then x  has the trivial solution only and hence
        Null( ) , giving nullity( ) . By the Rank-Nullity Theorem, we have 

rank  . This can be reversed.                                      ■

http://sage.skku.edu
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print A.right_nullity()            # nullity computation
                                                                          
3
1                                                                     ■

   

Theorem  7.4.5
For matrices  ,   with multiplication   defined, the followings hold:

(1) Null( )⊆ Null( ).
(2) Null(  )⊆ Null( ).
(3) Col( )⊆ Col( ).
(4) Row( )⊆ Row( ).

Proof We prove only (1) here. For
       x∈Null ⇒  x  ⇒  x x    .
       ∴  x∈ Null                                                                 ■

   

Theorem  7.4.6
rank( ) ≤ min{rank( ), rank( )}.

Follows from theorem 7.4.5.

   

Theorem  7.4.7
Multiplying a matrix   by an invertible matrix     ×   does not 
change the rank of   . That is, if  ≠ , then

rank( )rank( )rank( ).

 
Follows from theorem 7.4.6.
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Theorem  7.4.9 [Equivalent statements of invertible matrices]
For an × matrix  , the following are equivalent:
 (1)   is invertible.
 (2) det ≠ .
 (3)   is equivalent to  .
 (4)   is a product of elementary matrices.
*(5)   has a unique -factorization. That is, there exists a 

permutation matrix   such that     where   is a lower 
triangular matrix with all the diagonal entries equal to 1,   is an 
invertible diagonal matrix, and   is an upper triangular matrix 
whose main diagonal entries are all equal to 1.

 (6) For any ×  vector b, x  b has a unique solution.
 (7) x    has the unique solution x  .
 (8) The column vectors of   are linearly independent.
 (9) The column vectors of   span   . 
*(10)   has a left inverse. That is, there exists a matrix   of order  
such that   .

   

Theorem  7.4.8
Suppose     ×   has rank( ). Then

(1) Every submatrix  of   satisfies rank() ≤ .
(2)   must have at least one ×  submatrix whose rank is equal to . 

Proof (1) Suppose the submatrix   is obtained by taking   rows of   (we let   
          be this matrix consisting of the   rows of  ) and taking  columns of 
           . Since Row⊆ Row and Col⊆ Col, the result follows.
           
      (2) Since the rank of   is , there are  linearly independent rows of  . 

Then the matrix   consisting of the  linearly independent rows has the 
rank equal to . We now form a matrix   by taking  linearly 
independent columns of  . Then  is an ×  submatrix of   whose 
rank is equal to .                                            ■

Main Theorem of Inverse Matrices
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 (11) rank   .
 (12) The row vectors of   are linearly independent.
 (13) The row vectors of   span   .
*(14)   has a right inverse. That is, there exists a matrix   of order  
satisfying   . 
 (15)   is one-to-one.
 (16)   is onto.
 (17)    is not an eigenvalue of  .
 (18) nullity  .

Proof  We first prove the following equivalence: 
 
① (10) ⇒  (7) ⇒  (8) ⇒  (11) ⇒  (10)

(10) ⇒  (7): Suppose   has a left inverse   such that 
  . If x satisfies  x , then    gives 

x  x x  x     .

Hence x  has the unique solution x   .

(7) ⇒  (8): Suppose x   has only the trivial solution. If v denotes the th 
column vector of   and x   ⋯  

 , then

           v v ⋯ v   ⇔  x    ⇒  x   ⇔       ≤  ≤ 

Hence the set vv ⋯ v of the column vectors of   is linearly independent. 

(8) ⇒  (11): Suppose the column vectors of   are linearly independent. Then 
rank , which is equal to the maximum number of linearly independent columns 
of  , is equal to .

(11) ⇒  (10): Suppose rank  . Then the rows of   are linearly independent. 
Let e be the th standard basis vector. Then the following linear systems

  x e,   ≤  ≤ 
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are consistent for all , since rank(  )rank     e  . Letting x be a 

solution to the linear systems,  











x


x


⋮
x


 is a left inverse of  . 

② (1) ⇒  (6) ⇒  (14) ⇒  (2) ⇒  (1) 

(1) ⇒  (6): Suppose   is invertible. Then, for any ×  vector b,

  b     b   b  b.

Hence x b has a solution x     b. For the uniqueness of the solution, 
suppose x  is another solution. Then 

x  x   x    x    b x .

Therefore x b has a unique solution.
(6) ⇒  (14): Suppose that for each × b, the linear system x  b has a unique 
solution. If we take b to be e, the th standard basis vector, then the following 
linear system

 x e,   ≤  ≤ 

also has a unique solution. If x is the solution to the linear system, then the 
matrix   x x ⋯ x   is a right inverse of  .
(14) ⇒  (2): Suppose   has a right inverse   such that   . Then

det det   det  det   .
Hence det  ≠ . 

(2) ⇒  (1): Suppose det≠ . If we let  det 
 adj  , then it can be shown 

that
    .

Hence   is invertible.                                                       ■
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7.5  Lecture Movie : http://youtu.be/GlcA4l8SmlM, http://youtu.be/Rv1rd3u-oYg  

 Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-10-sec-7-5.html 

Projection Theorem

In Chapter 1, we have studied the orthogonal project in ℝ  where the 
vectors and their projecttions can be visualized. In this section, we 
generalize the concept of project in ℝ . We also show that the 
projection is a linear transformation and find its standard matrix, which 
will be crucial to study the Gram-Schmidt Orthogonalization and the 
QR-Decomposition. 

Orthogonal Projection in ℝ

p a∥a∥

x∙ a a proj ax
                                 w x p

 Projection (in 1-Dimension subspace) on ℝ  

   

Theorem  7.5.1 [Projection]
For any nonzero vector a in ℝ , every vector x∈ℝ  can be expressed 
as follows: 

x proj a x w  aw  pw,

where p  is a scalar multiple of a and w is perpendicular to a. 
Furthermore, the vectors p w can be written as follows:  

p a  a
x⋅ a a ,  w x p.

http://youtu.be/GlcA4l8SmlM
http://youtu.be/Rv1rd3u-oYg
http://matrix.skku.ac.kr/knou-knowls/cla-week-10-sec-7-5.html
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The proof of the above theorem is similar to that in case of orthogonal projection 
in the ℝ  and ℝ .

 In the above theorem, the vector p is called the orthogonal projection of x onto 

spana and denoted by proj axa
x⋅ a a . The vector w is called the orthogonal 

complement of the vector a.

   

Definition  [Orthogonal projection on ℝ]

The transformation   ℝ → ℝ  defined below

x  proj axa
x⋅ a a

is called the orthogonal projection of ℝ  onto spana.

 It can be shown that the orthogonal projectionx  proj ax  is a linear 
transformation. 

  (http://www.math.lsa.umich.edu/~speyer/417/OrthoProj.pdf)

   

Theorem  7.5.2 
Let a be a nonzero column vector in ℝ . Then the standard matrix of
 

x  proj  a x x

is

 aa
 aa .

Note that   is a symmetric matrix and rank   .

For the proof of this theorem, see the website:
http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/least-squ
ares-determinants-and-eigenvalues/projections-onto-subspaces/MIT18_06SCF11_Ses
2.2sum.pdf 

http://www.math.lsa.umich.edu/~speyer/417/OrthoProj.pdf
http://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/least-squ
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Example 1 Using the above theorem, find the standard matrix   of the orthogonal 
projection in ℝ  onto the line   tan   passing through the origin.

Solution

This is a problem of finding the orthogonal projection of a vector x  
onto the subspace spanned by a vector a . Hence we take a  as a unit 
vector u  on the line   tan. Since the slope of the line is 

tan cos
sin , u 


 


cossin  and u   . Therefore, by the previous 

theorem,

   uu
 uu  u 

 uu uu 


 


cossin  cos sin 




 


cos sincos

sincos sin
■

Example 2 Find the standard matrix   for the orthogonal projection  in ℝ  onto 
the subspace spanned by the vector a    .

Solution

aa     








 


 , aa 









 


     









   

    
   

Hence,  aa
 aa  










   

    
   

                                       ■

   

http://en.wikipedia.org/wiki/Fischer_projection 

http://en.wikipedia.org/wiki/Fischer_projection


- 258 -

Projection of x on subspace   in ℝ

   

Theorem  7.5.3
Let   be a subspace of ℝ . Then every vector x  in ℝ  can be 
uniquely expressed as follows:
 

x x  x   where x∈ and x∈ ⊥ .

In this case x  is called the orthogonal projection of x onto  and is 
denoted by proj x.

x  proj  x, x  x x  proj ⊥x

http://www.math.lsa.umich.edu/~speyer/417/OrthoProj.pdf

   

Theorem  7.5.4
Let   be a subspace of ℝ . If   is a matrix whose columns are the 
vectors in a basis for , then for each vector x ∈ℝ

 
projx    x.

Proof  http://www.math.lsa.umich.edu/~speyer/417/OrthoProj.pdf 

http://www.math.lsa.umich.edu/~speyer/417/OrthoProj.pdf
http://www.math.lsa.umich.edu/~speyer/417/OrthoProj.pdf
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Example 3 Find the standard matrix for the orthogonal projection in ℝ   onto the 
plane     .

Solution

The general solution to       is

   























  




 














 











 



 ( ∈ℝ ).

Thus       is a basis of the plane     .

Hence, by taking  








  

 
 

, the standard matrix is       . 

Since   


 


  

   









  

 
 




 


  

  
 and    




















,

        








  

 
 






















 


  

   

















 










 







   

Sage  http://sage.skku.edu
                                                                           
M=matrix(3, 2, [4, -2, 1, 0, 0, 1])
print M*(M.transpose()*M).inverse()*M.transpose()
                                                                          
[20/21  4/21 -2/21]
[ 4/21  5/21  8/21]
[-2/21  8/21 17/21]                                                   ■

 The standard matrix   for an orthogonal projection is symmetric and 
idempotent (   ).

    

http://sage.skku.edu
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 [Remark]  Simulation of the projection of two vectors 

Ÿ http://www.geogebratube.org/student/m9503

 

http://matrix.skku.ac.kr/mathLib/main.html 

http://www.geogebratube.org/student/m9503
http://matrix.skku.ac.kr/mathLib/main.html
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7.6  Lecture Movie : https://youtu.be/BC9qeR0JWis  

 Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-10-sec-7-6.html 

* Least square solutions

Previously, we have studied how to find solve the linear system x b
when the linear system has a solution. In this section, we study how to 
find an optimal solution using projection when the linear system does 
not have any solution. 

Details can be found in the following websites: 
               http://www.seas.ucla.edu/~vandenbe/103/lectures/ls.pdf 

Least square solutions with GeoGebra
<Simulations> http://www.geogebratube.org/student/m12933 

     

Least square solutions with Sage
<Simulations> http://matrix.skku.ac.kr/2012-album/11.html 

      

https://youtu.be/BC9qeR0JWis
http://matrix.skku.ac.kr/knou-knowls/cla-week-10-sec-7-6.html
http://www.seas.ucla.edu/~vandenbe/103/lectures/ls.pdf
http://www.geogebratube.org/student/m12933
http://matrix.skku.ac.kr/2012-album/11.html
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7.7  Lecture Movie: http://youtu.be/gt4-EuXvx1Y, http://youtu.be/EBCi1nR7EuE 

 Lab: http://matrix.skku.ac.kr/knou-knowls/cla-week-10-sec-7-7.html 

Gram-Schmidt 

Orthonomalization process

Every basis of ℝ  has  elements, but all the bases are distinct. 
In this section, we show that every nontrivial subspace of ℝ  has 
a basis and how to find an orthonormal basis from a given basis. 

[Remark]

The subspaces  and ℝ  of ℝ  are called trivial subspaces. 
There are many different bases for ℝ , but all the bases have  elements and 
the number  is called the dimension of ℝ .

Orthogonal set and orthonormal set

   

Definition 

For vectors x x … x  in ℝ , let

  x x … x.

If every pair of vectors in   is orthogonal, then   is called an 
orthogonal set. Furthermore, if every vector in the orthogonal set   is 
a unit vector, then   is called an orthonormal set. 

 The above definition can be summarized as follows:

       is an orthogonal set.       ⇔    x⋅ x   ≠  

http://youtu.be/gt4-EuXvx1Y
http://youtu.be/EBCi1nR7EuE
http://matrix.skku.ac.kr/knou-knowls/cla-week-10-sec-7-7.html
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Example 1 (1) The standard basis e e e  for    is orthonormal.

(2) In    let x     x     x     . Then x x x 
is orthogonal, but not orthonormal. 

(3) In    let y     y  


 

  y  


  

 . Then 
the set y y y is orthonormal.   
                                
(4) If x  … x is an orthogonal set, then ∥x∥

x
 …∥x∥

x  is an 
orthonormal set. ■

       is an orthonormal set.     ⇔    x⋅ x    ≠  
    

 ( Kronecker delta)  

Orthogonality and Linear independance

   

Theorem  7.7.1
Let   x x … xk be a set of nonzero vectors in ℝ . If   is 
orthogonal, then   is linearly independent. 

Proof  For   …  ∈ℝ , suppose

x  x  ⋯  x   .

       Then, for each   (  , , … , ),

x  x  ⋯ x ⋅ x  ⋅ x.

       That is,

 x⋅ x    x⋅ x   ⋯   x⋅ x   ⋅ x  

       Since, for  ≠ , x⋅ x  , we have 
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Example 2
 Sets in (1) and (3) of Example 1  are orthonormal bases of ℝ  and the 
set in (2) is an orthogonal basis of ℝ .

 x⋅ x     x 
       … .

       Since x ≠   implies x        … ,  we have

    ⋯    .

       Therefore,   is linearly independent.                                      ■

Orthogonal Basis and Orthonormal Basis

   

Definition  [Orthonormal basis]

Let   be a basis for ℝ . If   is orthogonal, then   is called an 
orthogonal basis. If   is orthonormal, then   is called an orthonormal 
basis.

   

   

Theorem  7.7.2
Let   x x… xn be a basis for ℝ . 

(1) If   is orthonormal, then each vector x  in ℝ  can be expressed as

x  x  x  ⋯  x ,

   where   x⋅ x     ⋯  .

(2) If   is orthogonal, then  x


x⋅ x .

Proof  We prove (1) only. Since   is a basis for ℝ , each vector x ∈ℝ  can be 
expressed as a linear combination of vectors in   as follows:



- 265 -

Example 3 Write y       as a linear combination of the vectors in

   y     y  


  

  y  


  

 

that is the orthonormal basis for ℝ  in (3)

Solution

Let y  y  cy  cy . Then, by Theorem 7.7.2,   y⋅ y     . 
Hence 

         y⋅ y   ,   y⋅ y  

 ,   y⋅ y  

 .

∴ y  y  cy  cy   y  

 y  

 y .                     ■

Theorem  7.7.3
(1) Suppose  ′  x x … x is an orthonormal basis for ℝ . Then, 
since x   , the orthogonal projection y∈ℝ  onto the subspace 
     x x … x   in ℝ  is 

y   proj W kyy⋅ x x  y⋅ x x ⋯ y⋅ xkxk .

(2) If  ′  x x … x is an orthogonal basis, but not an orthonormal 
basis for ℝ , then y  proj 

y  can be written as

x  x  x  ⋯  x  ∈ℝ .

       For each      … , we have

          x⋅ x  x  x  ⋯  x ⋅ x

                  x⋅ x   x⋅ x  ⋯   x⋅ x.

       Since   is orthonormal, x⋅ x   ≠ 
   

. Hence 

                         x⋅ x     …  .                                    ■
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Example 4 Let   be a subspace of ℝ  spanned by the two vectors  

x     x  


   
  in an orthonormal set   x x . Find 

the orthogonal projection of y      onto   and the orthogonal 
component of y perpendicular to  .

Solution

y  proj y  y⋅ x x  y⋅ x x

                   
 


   

  


  

 .

The orthogonal component of y perpendicular to   is

y y  proj  y     


  
  


  

 .            ■

y   proj 
yx



y⋅ x x x


y⋅ x x ⋯x


y⋅ x x.

Gram-Schmidt orthonormal process

   

Theorem  7.7.4
Let   x x … x be a basis for ℝ . Then we can obtain an 
orthonormal basis from  .

Proof  [Gram-Schmidt Orthonormalization] 
We first derive an orthogonal basis   y y … yn for ℝ  from the basis   as 
follows:
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[Step 1] Take y  x .

[Step 2] Let   be a subspace spanned by y  and let

         y  xproj
x x y



x⋅ y y .

[Step 3] Let   be a subspace spanned by y  and y  and let

        y  xproj
x x y



x⋅ y y y


x⋅ y y .

[Step 4] Repeat the same procedure to get

   y  xproj
x x y



x⋅ y y y


x⋅ y y⋯y 


x⋅ y  y       … , 

   where   x x … xk  .

It is clear that  y y … y is orthogonal. By taking

                                  z y
y

    … ,

we get an orthonormal basis z z … z for   .                                ■

The above process of producing and orthonormal basis from a given basis is 
called the Gram-Schmidt Orthogonalization process.

 [Remark] Simulation for Gram-Schmidt Orthonormalization 

Ÿ http://www.geogebratube.org/student/m58812

 

http://www.geogebratube.org/student/m58812
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Example 5 Use the Gram-Schmidt Orthonormalization to find an orthonormal basis 
  z z for ℝ  from the two linearly independent vectors x   , 
x   .

Solution

We first find orthogonal vectors y , y  as follows:

[Step 1] y  x   

[Step 2] y  x  proj 
x x y



x⋅ y y   

    


 
 

   z y

y
 


 

 , z y

y
 


 

                ■

Example 6 Let x      x      x     . Use the Gram-Schmidt 
Orthonormalization to find an orthonormal basis   z z z for ℝ  
using the basis   x x x for ℝ . 

Solution

We first find orthogonal vectors y y y :
[Step 1] Take y  x    .
[Step 2]

y  x  proj 
x  x y



x⋅ y y    

     


 

 

[Step 3] y  x  proj 
x x y



x⋅ y y y


x⋅ y y

               

   

  

 

   


 

  

 

By normalizing y y y , we get

z y

y
 


 


 

z y

y
 


 



 

z y

y
  


 

  

 .
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Therefore,   


 


  


 



   


 

  

    □

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

① Computation for an orthogonal basis
                                                                           
x1=vector([1,1,0])
x2=vector([0,1,2])
x3=vector([1,2,1])
A=matrix([x1,x2,x3])         # generate a matrix with x1, x2, x3
[G,mu]=A.gram_schmidt()   # find an orthogonal basis. A==mu*G
print G
                                                                          
[   1    1    0]
[-1/2  1/2    2]
[-2/9  2/9 –1/9]

② Normalization
                                                                           
B=matrix([G.row(i) / G.row(i).norm() for i in range(0, 3)]); B
# The rows of matrix B are orthonormal
                                                                          
[   1/2*sqrt(2)     1/2*sqrt(2)              0]
[-1/3*sqrt(1/2)   1/3*sqrt(1/2)  4/3*sqrt(1/2)]
[          -2/3            2/3           -1/3]

Therefore, we get an orthonormal basis

  


 


  


 



   


 

  

 .

We can verify if   is orthonormal as follows:

③ Checking for orthonormality
                                                                           
print B*B.transpose()     # Checking if B is an orthogonal matrix.
print
print B.transpose()*B
                                                                          
[1 0 0]         [1 0 0]

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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[0 1 0]         [0 1 0] 
[0 0 1]         [0 0 1]                                                ■

Example 7
Let x     x     . Use the Gram-Schmidt 
Orthonormalization to find an orthonormal basis   z z for a 
subspace of ℝ  for which   x x is a basis.  

Solution

y  x     

y  x  proj 
x  x y



x⋅ y y     

       

∴ z y

y
 


 


 

  z y

y
 





 

     ■

"Good, he did not have enough imagination to become a 
mathematician".

David Hilbert (1862–1943)
http://en.wikipedia.org/wiki/David_Hilbert
Hilbert is known as one of the founders of proof 
theory and mathematical logic,

http://en.wikipedia.org/wiki/David_Hilbert
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7.8  Lecture Movie : http://www.youtube.com/watch?v=crMXPi2lgGs  

 Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-10-sec-7-8.html 

QR-Decomposition; Householder Transformations

If an × matrix   has  linearly independent columns, then the 
Gram-Schmidt Orthogonalization can be used to decompose the matrix 
  in the form of    where the columns of   are the 
orthonormal vectors obtained by applying the Gram-Schmidt 
Orthognalization to the columns of   and  is an upper triangular 
matrix. The -decomposition is widely used to compute numerical 
solutions to linear systems, least-squares problems, and eigenvalue and 
eigenvector problems. In this section, we briefly introduce the 

-decomposition. 

Details can be found in the following websites: 
Ÿ http://www.math.ucla.edu/~yanovsky/Teaching/Math151B/handouts/GramSchmidt

.pdf 
Ÿ https://inst.eecs.berkeley.edu/~ee127a/book/login/l_mats_qr.html 
Ÿ http://www.ugcs.caltech.edu/~chandran/cs20/qr.html
 

http://www.youtube.com/watch?v=crMXPi2lgGs
http://matrix.skku.ac.kr/knou-knowls/cla-week-10-sec-7-8.html
http://www.math.ucla.edu/~yanovsky/Teaching/Math151B/handouts/GramSchmidt
https://inst.eecs.berkeley.edu/~ee127a/book/login/l_mats_qr.html
http://www.ugcs.caltech.edu/~chandran/cs20/qr.html
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Example 1 The vector x     in ℝ  can be expressed as follows relative to 
the standard basis   e e e for ℝ :

x      e   e e .

7.9  Lecture Movie : http://youtu.be/M4peLF7Xur0,  http://youtu.be/tdd7gbtCCRg 

 Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-10-sec-7-9.html 

Coordinate vectors 

In a finite-dimensional vector space, a basis is closely related to a 
coordinate system. We have so far used the coordinate system 
associated to the standard basis of ℝ . In this section, we 
introduce coordinate systems based on non-standard bases. We 
also study the relationship between coordinate systems associated 
to different bases.  

 If   x x …  x  is an ordered basis for ℝ , then any vector x  in ℝ  is 
uniquely expressed as a linear combination of the vectors in   as follows:

 
            x  x  x  ⋯  x   …   ∈ ℝ  (1)
   Then   …    are called coordinates of the vector x  relative to the     
basis .

   

Definition  [Coordinate vectors]
The scalars   …    in (1) are called the coordinates of x relative 
to the ordered basis . Furthermore, the column vector in ℝ












⋮


is called the coordinate vector of x  relative to the ordered basis   
and denoted by x .

http://youtu.be/M4peLF7Xur0
http://youtu.be/tdd7gbtCCRg
http://matrix.skku.ac.kr/knou-knowls/cla-week-10-sec-7-9.html
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Therefore 

x 








 


.                                                        ■

Example 2 Let x     x     x     . For x     find the 
coordinate vector x  relative to the basis   x x x for ℝ .

Solution

From x     x  x  x  ∈ℝ   
                        ,

we get the linear system 









    

    
 

    

.

By solving this linear system, we get         .

∴  x 










 



.                                                        ■

 As described above, finding the coordinate vector relative to a basis is 
equivalent to solving a linear system. 

   

Theorem  7.9.1
Let   be a basis for ℝ . For vectors x y in ℝ  and a scalar  ∈ℝ , 
the following holds:

(1) x  y  x  y. 
(2)  x   x.

 In general we have
   y  y  ⋯  y   y    y   ⋯   y .
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Change of Basis

 Let   x x … x  and   y y … y be two different ordered bases for 
ℝ . In the following, we consider a relationship between x  and x  .

 Letting x  y  y  ⋯  y  ∈ℝ  , the coordinate vector of x ∈ℝ  
relative to   is

x  












⋮


,

  and  the coordinate vector x   of x ∈ℝ  relative to   can be expressed as

x   y  y  ⋯  y   y    y   ⋯   y .

  Let  y  











 
 ⋮
 

 be the coordiate vector of y relative to   and matrix   be

   y   y   ⋯  y  











    ⋯  
    ⋯  ⋮ ⋮ ⋮
    ⋯  

.

  Then we have

               x   











 
 ⋮
 

 











 
 ⋮
 

 ⋯  











 
 ⋮
 

                     










    ⋯  
    ⋯  ⋮ ⋮ ⋮
   ⋯  












⋮


  x   ,

  that is, x   x . (2)

 In the equation (2) matrix   transforms the coordinate vector x   to another 
coordinate vector x . Hence the matrix    y  y ⋯ y   is called a 
transition matrix from ordered basis  to ordered basis   and denoted by
   

 . Therefore, x   x  
 x .
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Example 3 Let   e e be the standard basis for ℝ  and y 


 





 y 



 


 


. 

For the two different ordered bases ,   y y:

(1) Find the transition matrix    
  from basis   to basis .

(2) Suppose x  


 





. Find the coordinate vector x .

(3) For x 


 





, show that equation (2) holds.

Solution

(1) Since    
   y  y  , we need to compute the coordinate vectors 

for y y  relative to . Since

                                 y  e  e

y  e  e

,

 y  


 





 y  



 


 


. Hence

                                 


 


  

 
.

(2) x   x 


 


  

 


 









 


 



(3) Since x 


 





 e  e  and also x 



 





 y  y ,

   x  


 





 x  



 





.

   It can be easily checked that x  


 









 


  

 


 





  x         ■

 This transformation is called change of basis. Note that the change of basis 
does not modify the nature of a vector, but it changes coordinate vectors. The 
following example illustrates this.
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Example 4 For x     x     x     and
y     , y    , y    , 
let   x x x and   y y y, both of which are bases for ℝ . 
Find    

 .

Solution

Since    y  y  y  , we first find the coordinate vectors for 
y y y  relative to . Letting 

x  x  x  y  ∈ℝ 

x  x  x  y  ∈ℝ 

x  x  x  y  ∈ℝ ,

we get the following three linear systems:

    

   

    

             

    

    

            

    

    

 

Note that all of the above linear systems have  








  

  
  

 as their 

coefficient matrix. Hence we can solve the linear systems simultaneously 
using the RREF of the coefficient matrix. That is, by converting the 
augmented matrix   ⋮ y ⋮ y ⋮ y  in its RREF, we can find the values 
of , ,      at the same time:

 








   ⋮  ⋮  ⋮ 

   ⋮   ⋮  ⋮ 
   ⋮  ⋮  ⋮ 

has the RREF

 








   ⋮   ⋮  ⋮ 

   ⋮  ⋮  ⋮ 
   ⋮  ⋮  ⋮ 

.

Therefore, the transition matrix from   to   is

                         
 











   
  
  

 .              □
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Ÿ http://matrix.skku.ac.kr/RPG_English/7-MA-transition-matrix.html 

Sage  http://sage.skku.edu
                                                                           
x1=vector([1,2,0]);x2=vector([1,1,1]);x3=vector([2,0,1])
A=column_matrix([x1, x2, x3])
y1=vector([4, -1, 3]);y2=vector([5, 5, 2]);y3=vector([6, 3, 3])
B=column_matrix([y1, y2, y3]) # Creating the matrix with columns y1, y2,  
                               # y3
aug=A.augment(B, subdivide=True)
aug.rref()       
                                                                          
[ 1  0  0|-1  2  1]
[ 0  1  0| 1  1  1]
[ 0  0  1| 2  1  2]                   ■

Example 5
For the two bases   for ℝ  in Example 4 , compute the following:

(1) The transition matrix    
  from basis   to basis . 

(2) The coordinate vector x   relative to basis  for given x  













.

Solution

(1) Since the transition matrix from   to   is  










   
  
  

, by Theorem 

7.9.2, we have

   

Theorem  7.9.2
Suppose   and   are two different ordered bases for ℝ  and   be 
the transition matrix from   to . Then   is invertible and its inverse 
   is the transisiton matrix from   to , that is,     

 .

http://matrix.skku.ac.kr/RPG_English/7-MA-transition-matrix.html
http://sage.skku.edu
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.

(2) x    x 











 





 


   




 






























 

 .                  

Sage  http://sage.skku.edu
                                                                           
x1=vector([1,2,0]);x2=vector([1,1,1]);x3=vector([2,0,1])
x0=vector([1,5,2])
A=column_matrix([x1, x2, x3])
y1=vector([4, -1, 3]);y2=vector([5, 5, 2]);y3=vector([6, 3, 3])
B=column_matrix([y1, y2, y3]) 
aug=B.augment(A, subdivide=True)
Q=aug.rref()
print Q     
                                                                          
[   1    0    0|-1/2  3/2 -1/2]
[   0    1    0|   0    2   -1]
[   0    0    1| 1/2 -5/2  3/2]                                        ■

[Bookmarks] http://blog.daum.net/with-learn/5432044  

http://sage.skku.edu
http://blog.daum.net/with-learn/5432044
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Chapter 7    Exercises

Ÿ http://matrix.skku.ac.kr/LA-Lab/index.htm 
Ÿ http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm 

   Problem 1  Use determinant to check if the following vectors are linearly independent: 
             v     , v    , v     

 
   Problem 2  Determine if the given set   is a basis for ℝ .

(1)      

(2)           

  (Hint: http://math3.skku.ac.kr/spla/CLA-7.1-Exercise-2)

   Problem 3  Find two different bases for the subspace of ℝ  described by the equation  
    .

   Problem 4  Given a homogeneous linear system, find a basis and the dimension of its 
corresponding solution space.

(1)        

           

    (Hint: http://math1.skku.ac.kr/home/matrix1/261/)

(2)        

           

      

         

    (Hint: http://math1.skku.ac.kr/home/pub/548/)

   Problem 5  Given matrix  , find a basis for its null space and nullity( ).

http://matrix.skku.ac.kr/LA-Lab/index.htm
http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm
http://math3.skku.ac.kr/spla/CLA-7.1-Exercise-2
http://math1.skku.ac.kr/home/matrix1/261
http://math1.skku.ac.kr/home/pub/548
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A=matrix(ZZ,6,5,[2,2,-1,0,1,-1,-1,2,-3,1,1,1,-2,0,-1,0,0,1,1,1,0,0,0,1,1,0,0,1,1,0])
A.echelon_form()
A.right_kernel()

    











     

       
      
    
    
    

.

Solution   Sage: Find RREF of   ⋮ 











      
      
      
      
      
      

. x
































 







 











 





 ∈ forms a set of solutions.  




















 













 

and nullity() = 1.                   ■

   Problem 6  For the following matrix  , find a basis for its column space Col  and 
compute the column rank  .

    











    

        
     
     
    
     

.

   Problem 7  For given matrix   compute its rank and nullity. Verify if the rank and 
nullity of   satisfy the Rank-Nullity Theorem. 

(1)  








     

     
     

 

(2)  











     

     
    
    
    

.

Solution   ⓵   RREF( )

A=matrix(QQ, 3, 6, [2, 5, 7, 9, 10, 11, 2, 3, 1, 2, 4, 8, 8, 6, 2, 1, 2, 3])
print A.echelon_form()
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[    1     0     0  -3/4  -3/2 -13/4]
[    0     1     0   7/8   9/4  21/4]
[    0     0     1   7/8   1/4  -5/4]
=> rank( )=3 and nulllity ( )= 6-3 =3. 
② Sage:

A=matrix(QQ, 3, 6, [2, 5, 7, 9, 10, 11, 2, 3, 1, 2, 4, 8, 8, 6, 2, 1, 2, 3])
print A.rank()
print A.right_nullity()   

∴ rank( )=3 and nullity( )=3.              ■

   Problem 8  Check if rank   rank  .

    











     
    
    

      

.

   Problem 9  Using the table below compute Row  Null Col Null   for 
matrix  :

(a) (b) (c) (d) (e)
size of  × × × × ×

rank 3 2 1 3 2

   Problem 10  For ∈ ×  , if rank  , we say that   has full row ran, and if 
rank   ,   is said to have full column rank. Determine if   has 
full row rank and/or full column rank:

    











    
    
     
   
     

.

             (Hint: http://math1.skku.ac.kr/home/pub/565/)

   Problem 11  For a      , find a basis and the dimension of the hyperplane 
a⊥  x  a⋅ x .

http://math1.skku.ac.kr/home/pub/565
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Solution  For any  x     in a⊥ ,   ∙   . 
         =>       => dim a⊥      (since a∈  ). 
  A set {(1, 0, 0, -1), (0, 1, 0 ,-2), (0, 0, 1, 1)} forms a basis for hyperplane a⊥ .      ■

   Problem 12  For x    and a    , find the standard matrix for 
x  proj  ax.

 

   Problem 13  For x     and a     , using proj  ax, find x  and x  such 
that x∈  a , x∈  a ⊥  and x x  x .

Solution  x  proj  ax x  and its standard matrix is 

 aa
 aa 













 

      










   

   
    

.

     Since x∈  a  and x x, x x 









   

   
    












 













 



















 


.

             ∴ x x x




























 






















.                   ■

   Problem 14  For given x   , express x as x x  x  for which x  is in the 
direction of a    a  and x  is perpendicular to a .

   Problem 15  For the following   and b,  find the least squares solution to x b:

(1)   











     
      
      
     
     

, b 

















.
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(2)    











        

          
          
          
          
         

, b


















.

   Problem 16  Find the least squares curve     
  

  
  passing through 

the five points           .

   Problem 17  Determine the values of    which make the set  
          orthogonal.

   Problem 18  Find the orthonormal set relative to the following orthogonal vectors:
v     v     v    . 

Solution  Sage: 

x1=vector([1,2,1])

x2=vector([1,0,1])

x3=vector([3,1,0]) 

A=matrix([x1,x2,x3])       

[G,mu]=A.gram_schmidt()   

B=matrix([G.row(i) / G.row(i).norm() for i in range(0, 3)]); B

[1/6*sqrt(6) 1/3*sqrt(6) 1/6*sqrt(6)]

[  sqrt(1/3)  -sqrt(1/3)   sqrt(1/3)]

[  sqrt(1/2)           0  -sqrt(1/2)] .                ■

   Problem 19  Show that each of the following sets of vectors ℝ  is linearly independent, 
and find its corresponding orthonormal set:

(1) v      v      v     .

(2) v      v         v      .
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  Problem 20  For given plane         and vector v  , find the 
following (Note that the inner product is defined to be 〈uv〉 u⋅ v.):

   (1) A basis for the 2-dimensional vector space represented by the plane and its 
corresponding orthonormal basis

   (2) proj v 

   Problem 21  For the ordered basis         for 
ℝ :

  (1) For x  , find its coordinate vector x  relative to .

  (2) For y  , find its coordinate vector y  relative to  .

  (3) Find the coordinate vector  x y   of x y relative to  .

  (4) For the above x  and y, find x  and  y   .

Solution   (1)























  (2) 























.    

Sage :
x1=vector([0,1,1,1]) ; x2=vector([1,0,-1,1]); x3=vector([1,2,0,2]); x4=vector([3,-2,2,0])
P=column_matrix([x1,x2,x3,x4])
A1=matrix(4,1,[7, -7, 5, 4]); A2=matrix(4,1,[1, -4, 4, 3])
P1=P.inverse()
print P1*A1; print; print P1*A2                                                  ■      

 
   Problem 22  For u    u    v    v   , let   u u, 

  v v which are bases for ℝ .

  (1) Find the transition matrix  .

  (2) Find the transition matrix   .
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  (3) Suppose w   . Find w  using the transition matrix  .

  (4) Suppose w   . Find w using the transition matrix .

   Problem P1  If the size of matrix   is ×, what is the value of
rank   nullity  ?

  Problem P2  (Select one) If one replaces a matrix with its transpose, then 
A. The image may change, but the kernel, rank, and nullity do not change.
B. The image, kernel, rank, and nullity may all change.
C. The image, rank, and kernel may change, but the nullity does not change.
D. The image, kernel, rank, and nullity all do not change.
E. The image, kernel, and nullity may change, but the rank does not change. 
F. The kernel may change, but the image, rank, and nullity do not change.
G. The image and kernel may change, but the rank and nullity do not change.

  Problem P3  (Select one) Let   ℝ→ℝ  be a linear transformation. Then 

A.  is invertible if and only if the rank is five.
B.   is one-to-one if and only if the rank is three;  is never onto. 
C.   is onto if and only if the rank is two;  is never one-to-one.
D.  is one-to-one if and only if the rank is two;  is never onto.
E.  is onto if and only if the rank is three;  is never one-to-one.
F.   is onto if and only if the rank is five;  is never one-to-one.
G.   is one-to-one if and only if the rank is five;   is never onto.

  Problem P4  (Select one) If a linear transformation   ℝ→ℝ  is onto, then 
A. The rank is three and the nullity is zero. 
B. The rank and nullity can be any pair of non-negative numbers that add up to three.
C. The rank is three and the nullity is two.
D. The rank is two and the nullity is three.
E. The situation is impossible. 
F. The rank and nullity can be any pair of non-negative numbers that add up to five.
G. The rank is five and the nullity is two.
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  Problem P5  (Select one) If a linear transformation   ℝ→ℝ  is one-to-one, then 
A. The rank is five and the nullity is two.
B. The situation is impossible.
C. The rank and nullity can be any pair of non-negative numbers that add up to five.
D. The rank is two and the nullity is three.
E. The rank is three and the nullity is zero. 
F. The rank is three and the nullity is two.
G. The rank and nullity can be any pair of non-negative numbers that add up to three.

  Problem P6  
(1) If the homogeneous linear system x  has  linear equations and  unknowns, 

what is the maximum possible value for the dimension of the solution space?

(2) What is the dimension of a hyperplane in ℝ  perpendicular to a vector a  in ℝ?
         
(3) List all of the possible dimensions of subspaces of ℝ?

(4) What is the dimension of the subspace of ℝ  spanned by the three vectors 
v  , v  , v  ?

   Problem P7  Suppose   x … x is a basis for ℝ . If   is an invertible matrix of 
order , show that the set x … x is also a basis for ℝ .

  Problem P8  Determine if the following matrix   and    have the same null space and 
row space:

             








 

 
   

 Problem P9  What happens if the Gram-Schmidt Orthonormalization Procedure is applied 
to linearly dependent vectors?

  Problem P10  Suppose the columns of   are orthonormal. What is a relationship between 
the column spaces of    and ?
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  Problem P11  Show that the set   spans ℝ .

  Problem P12  What are the possible ranks of   according to the varying values of :

             








  

  
  

.

[2014 ICM Seoul, Korea] http://www.icm2014.org/  

http://www.icm2014.org
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Diagonalization

8
 8.1 Matrix Representation of Linear Transformation
 8.2 Similarity and Diagonalization
 8.3 Diagonalization with orthogonal matrix, *Function of matrix
 8.4 Quadratic forms 
*8.5 Applications of Quadratic forms 
 8.6 SVD and generalized eigenvectors
 8.7 Complex eigenvalues and eigenvectors
 8.8 Hermitian, Unitary, Normal Matrices
*8.9 Linear system of differential equations
Exercises

In Chapter 6, we have studied how to represent a linear transformation from ℝ

into ℝ  as a matrix using its corresponding standard matrix. We were able to 
compute the standard matrix of the linear transformation based on the fact that 
every vector in ℝ  or ℝ  can be expressed as a linear combination of the 
standard basis vectors. 

In this chapter, we study how to represent a linear transformation from ℝ  to 
ℝ  with respect to arbitrary ordered bases for ℝ  and ℝ . In addition, we study 
relationship between different matrix representations of a linear transformation 
from ℝ  to itself using transition matrices. We also study matrix diagonalization. 

Chapter
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Further we study spectral properties of symmetric matrices and show that every 
symmetric matrix is orthogonally diagonalizable. 

* A quadratic form is a quadratic equation which we come across in mathematics, 
physics, economics, statistics, and image processing, etc. Symmetric matrices play 
a significant role in the study of quadratic forms. In particular, we will learn how 
orthogonal diagonalization of symmetric matrices is used in the study of quadratic 
forms. 

We introduce one of the most important concept in matrix theory called the 
singular value decomposition (SVD) which find many applications in science and 
engineering.

We will generalize matrix diagonalization of × matrices and study least squares 
solutions and a pseudoinverse. 

We introduce complex matrices having complex eigenvalues and eigenvectors. We 
also introduce Hermitian matrices and unitary matrices that are complex 
counterparts corresponding to symmetric matrices and orthogonal matrices, 
respectively. Lastly, we study diagonalization of complex matrices. 
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8.1  Lecture Movie : http://youtu.be/jfMcPoso6g4

 Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-11-sec-8-1.html 

Matrix Representation

In Chapter 6, we have studied how to represent a linear 
transfromation from ℝ  into ℝ  as a matrix using the standard 
bases for ℝ  and ℝ .  In this section, we find a matrix 
representation of a linear transformation from ℝ  into ℝ  with 
respect to arbitrary ordered bases for ℝ  and ℝ . 

Matrix Representation Relative to the Standard Bases

http://youtu.be/jfMcPoso6g4
http://matrix.skku.ac.kr/knou-knowls/cla-week-11-sec-8-1.html
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Matrix Representation In Some Ordered Bases for ℝ 

and ℝ

   

Theorem  8.1.1
Let   ℝ → ℝ  be a linear transformation, and let 

  x … x   y … y

be ordered bases for    and  , respectively. Let y x. Then

y   ′ x  
 x ,

where the matrix representation  ′  
  of  in the ordered bases   

and   is
′   x   x  ⋯  x  .

Note that the matrix 
  is called the matrix associated with the linear 

transformation  with respect to the bases  and .
Proof  Recall that any vector x∈ℝ  can be uniquely represented as a linear 
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combination of vectors in   x … x, say

x x  x ⋯ x .

       Then the coordinate vector for x  relative to the basis   is

x 












⋮


.

       By the linearity of , we have y  x  x   x ⋯  x . 
Since y is a vector in ℝ , the coordinate vector of y relative to   satisfies

          y   x    x  ⋯  x 

                x   x   ⋯  x 












⋮


  ′ x                     ■

Thus the matrix 
  is the matrix whose th column is the coordinate vector 

x  of x with respect to the basis  .

 [Remarks] 
(1) By Theorem 8.1.1 we can compute  x  by a matrix-vector 
multiplication, that is,

y  x  
 x   ′ x.

(2) The matrix  
   ′ varies according the ordered bases  . For example, 

if we change the order of the vectors in the ordered base , then the columns 
of  ′  change as well.
(3) The matrices       

  and  ′   
  are distinct, but they have the 

following relationship: 
 ′  

  
 

  
 ≅  

    

(4) If     and    , then  ′  
 is denoted by     and is called 

the matrix representation of   relative to the ordered basis .
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Example 1
Define a linear transformation   ℝ→ ℝ  via 

























 
 



 and let 

 







x 










 x 










 x 


















,   y 







 y 



 






be ordered bases for ℝ  and ℝ , respectively. Compute  ′  
 .

Solution

Since  ′  
   x  x  x    ×  , we first compute  

x  x  x :

   x


 
 



, x



 




, x







  

We now find the coordinate vectors of the above vectors relative to the 
ordered basis  . Since

   x


 
 



 y  y  



 





 



 


 




   x


 




 y  y  



 





 



 


 




   x






 y  y  



 





 



 


 


,

we need to solve the corresponding linear systems with the same 

coefficient matrix 

 


  

 
. The augmented matrix for all of the three 

linear systems is 

 


   ⋮  ⋮   ⋮ 

  ⋮   ⋮  ⋮ 
. By converting this into its 

RREF, we get

   









  ⋮  ⋮  
 ⋮ 



  ⋮   ⋮ 
 ⋮  


.

Therefore,       ,      

 

,     


  


 and 

hence

    ′  
   x  x  x    × 










  






  


 


.
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   (Note that     




 


   

   
.)                              ■

Example 2
Let   ℝ→ℝ  be defined via 








  

 
  




 and

     x 






 x 







   y 




 


 




 y 





 






 y 



















be ordered bases for ℝ  and ℝ , respectively. Find  ′  
 .

Solution

Since x



 
 
 




, x




 
 
 




, we have

   y y y ⋮ x  ⋮ x 








    ⋮  ⋮ 

   ⋮   ⋮  
    ⋮   ⋮  

.

We can get its RREF as follows:   









    ⋮  ⋮ 

   ⋮   ⋮  
    ⋮   ⋮  










    ⋮  ⋮ 

   ⋮   ⋮  
   ⋮  ⋮ 

  

                        











   ⋮ 

 ⋮ 


   ⋮  
 ⋮  



   ⋮  ⋮ 

.

Therefore, we get  ′ as follows:

    ′  
 
















 


 


 

.                                          □

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/ 

① Write y y y ⋮ x  ⋮ x . 
                                                                           

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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x, y = var('x, y')
h(x, y) = [x+y, x-3*y, -2*x+y]
T = linear_transformation(QQ^2, QQ^3, h)
x1=vector([1, 1])
x2=vector([2, 1])
y1=vector([1, 0, -1])
y2=vector([-1, 2, 1])
y3=vector([0, 1, 1])
B=column_matrix([y1, y2, y3, T(x1), T(x2)])   # Matrix whose columns are  
                                              # the vectors defined above
print B
                                                                          
[ 1 -1  0  2  3]
[ 0  2  1 -2 -1]
[-1  1  1 -1 -3]

② RREF y y y ⋮ x  ⋮ x  
                                                                           
C=B.echelon_form()
print C
                                                                          
[   1    0    0  1/2  5/2]
[   0    1    0 -3/2 -1/2]
[   0    0    1    1    0]

③ Finding 
  

                                                                           
A=C.submatrix(0, 3, 3, 2)  # C.submatrix(a, b, c, d)
# submatrix with c consecutive rows of C starting from row a+1 and d  
# consecutive columns of C starting from  column b+1 
print A
                                                                          
[ 1/2  5/2]
[-3/2 -1/2]
[   1    0]     

We shall include calculation using the inbuilt function. Following are the 
codes.
                                                                           
var('x,y')
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h(x,y)=[x+y,x-3*y,-2*x+y]
V=QQ^2;W=QQ^3
T=linear_transformation(V,W,h)
y1=vector(QQ,[1,1]);y2=vector(QQ,[2,1])
x1=vector(QQ, [1,0,-1]);x2=vector(QQ, [-1,2,1]);x3=vector(QQ,[0,1,1]);
alpha=[y1,y2]; beta=[x1,x2,x3]
V1=V.subspace_with_basis(alpha); W1=W.subspace_with_basis(beta)
T1=(T.restrict_domain(V1)).restrict_codomain(W1)
T1.matrix(side='right')
                                                                          
[ 1/2  5/2]
[-3/2 -1/2]
[   1    0]                                                           ■
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Example 3
Let   ℝ → ℝ  be a linear transformation defined as  





 








 

 
 

 

and consider the ordered bases   e e,   e e e for ℝ  and 
ℝ , respectively. Answer the following questions:

(1) Find  ′  
 .

(2) Compute 

 



 

   using   ′  
  in (1).

(3) Using the definition of  , find the standard matrix     
 

and  


 

 , where   and   are the standard bases of ℝ  and ℝ  
repectively.

Solution

(1) Since e  








 


, e  














, we get 

  








 

 










 















 















. Hence 

                         ′  
 









 

  
 

.

(2) Since 

 


 

 




 




 
, we have

   

 



 

   


 


 

 
  ′  


 

 










 

  
 



 




 












 
 

                e   e    e

   (Note that  


 

  

 



 

  










 
 


   e   e e .) 

(3) 
 









 

  
 

,  


 

  








⋅   

  
  ⋅ 












 
 


.                   ■
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[Remark] 
For given three vector spaces with different ordered bases, we 
can consider two linear transformations  and  , and their 
corresponding matrix representations   and   relative to the 
given ordered bases.  

Composition of Linear Transformations

Let  be a linear transformation from a vector space ℝ  with an ordered 
basis   into a vector space ℝ  with an ordered basis  , and   be a linear 
transformation from a vector sapce ℝ  with an ordered basis   into a vector 
space ℝ  with an ordered basis . Suppose these linear transformations have 
their corresponding matrix representations   

  and   
 , respectively. 

We can consider the composition  ∘ . Then its matrix representation is 

 ∘ 
  

 
   ,

That is, the product of the two matrix representations of  and  .
 

 [Remark] Transition Matrix
 as

As we have discussed earlier, x   
 x   x , the matrix    

 is called 
the transition matrix from ordered basis  to ordered basis . We can 
consider the transition matrix as linear transformation  x   x. 
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Example 4 Let    ℝ → ℝ  be linear transformations defined as 

 




  

 


 

 
 and  





  

 


  

 

respectively, Consider the ordered bases   e e,   e e, 
      for ℝ . Find the matrix representation of the 
composition  ∘  with respect to the ordered bases   and .

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/ 
                                                                           
x, y = var('x, y')
ht(x, y) = [2*x+y, x-y];hs(x, y) = [-x+5*y, 2*x+3*y]
T = linear_transformation(QQ^2, QQ^2, ht)
S = linear_transformation(QQ^2, QQ^2, hs)
x1=vector([1, 0]);x2=vector([0, 1]);x3=vector([1, 1])
B=column_matrix([x2, x1, T(x1), T(x2)]) 
C=B.echelon_form()
MT=C.submatrix(0, 2, 2, 2)
print "Matrix of T="
print MT
D=column_matrix([x1, x3, S(x2), S(x1)]) 
E=D.echelon_form()
MS=E.submatrix(0, 2, 2, 2)
print "Matrix of S="
print MS
print "MS*MT="
print MS*MT 
                                                                          
Matrix of T=
[ 1 -1]
[ 2  1]
Matrix of S=
[ 2 -3]
[ 3  2]
MS*MT=
[-4 -5]
[ 7 -1]
                                                                           
F=column_matrix([x1, x3, S(T(x1)), S(T(x2))]) 
G=F.echelon_form()
MST=G.submatrix(0, 2, 2, 2)

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080


- 300 -

print "Matrix of S*T="
print MST
                                                                          
Matrix of S*T=
[-4 -5]
[ 7 -1]

         ■

     

3D Printing object 1 
http://matrix.skku.ac.kr/2014-Album/2014-12-ICT-DIY/index.html 

http://youtu.be/FgAzOkqq7Sg 

http://matrix.skku.ac.kr/2014-Album/2014-12-ICT-DIY/index.html
http://youtu.be/FgAzOkqq7Sg
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8.2  Lecture Movie : http://youtu.be/xirjNZ40kRk, http://youtu.be/MnfLcBZsV-I 

 Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-11-sec-8-2.html 

Similarity and Diagonalization

In this section, we present various matrix representations of a 
linear transformation   from ℝ  to itself in terms of transition 
matrix. We also study when the transition matrix becomes a 
diagonal matrix. 

 [Remark] Relationship between matrix representations   
 and 

  

 
     

   
   

     
     

.
 

   

Theorem  8.2.1
Let   ℝ→ ℝ  be a linear transformation and   and  be ordered 
bases for ℝ . If      ′    , then we have

 ′     ,

where    
  is the transition matrix from   to .

                    ′     
   

  .

http://www.math.tamu.edu/~yvorobet/MATH304-503/Lect2-12web.pdf 

http://youtu.be/xirjNZ40kRk
http://youtu.be/MnfLcBZsV-I
http://matrix.skku.ac.kr/knou-knowls/cla-week-11-sec-8-2.html
http://www.math.tamu.edu/~yvorobet/MATH304-503/Lect2-12web.pdf
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Example 1 Let   ℝ→ ℝ  be a linear transfromation defined by  




  

 
 



. 

If   is the standard basis   for ℝ  and   y 






 y 



 




 is a 

basis for ℝ , find ′    using the transition matrix    
.

Solution

Let   be the standard matrix relative to the standard basis    for 

linear transformation  . Then we can find  


   
 



. If      , then

  y   y   


 


  

 
.

Therefore,   


  
  



 and by Theorem 8.2.1 we get  ′as follows:

 ′    


  
  





   
 





   
 







   
 



.     

         
Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/ 

                                                                           
x, y = var('x, y')
h(x, y) = [2*x-y, x+3*y]
T = linear_transformation(QQ^2, QQ^2, h)
x1=vector([1, 0]);x2=vector([0, 1])
y1=vector([0, 1]);y2=vector([-1, 1])
B=column_matrix([x1, x2, y1, y2]) 
C=B.echelon_form()
P=C.submatrix(0, 2, 2, 2)
print "Transition Matrix="
print P
A = T.matrix(side='right')  
print "A="
print A
print "P.inverse()*A*P"
print P.inverse()*A*P 
D=column_matrix([y1, y2, T(y1), T(y2)]) 
E=D.echelon_form()
print "Matrix of A wrt beta="
print E.submatrix(0, 2, 2, 2)

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080


- 303 -

                                                                          
Transition Matrix=
[ 0 -1]
[ 1  1]
A=
[ 2 -1]
[ 1  3]
P.inverse()*A*P
[ 2 -1]
[ 1  3]
Matrix of A wrt beta=
[ 2 -1]
[ 1  3]                                           ■

Example 2
For  




   
  
   




,  




   
   
  




,  




   
  
  




, it can be shown that  

     . Hence   is similar to  , which is denoted by ∼  .    ■

Similarity

   

Definition  [Similarity]

For square matrices    of the same order, if there exists an 
invertible matrix   such that

     ,
then we say that   is similar to  . We use ∼   for similar matrices 
  . 
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Theorem  8.2.2
For square matrices     of the same order, the following hold:
 (1)  ∼ 

 (2) ∼  ⇒  ∼ 

 (3) ∼   ∼  ⇒ ∼ 

Therefore, the similarity relation is an equivalence relation. 

   

Theorem  8.2.3
For square matrices    of the same order, if    are similar to 
each other, then we have the following: 
 (1) det  det.
 (2) tr   tr.

Proof  Since  ∼  , there exists an invertible matrix   such that      .

       (1) By the multiplicative property of determinant, 
       det   det  

          ⇒ det  det  detdet  (∵ det  detdet)

          ⇒ det  det  det det 

          ⇒ det  det ∵ det      det  det 

       (2) tr   tr    tr     (∵ tr  tr  )

              tr    tr                                                      ■

 Since similar matrices have the same determinant, it follows that they have the 
same characteristic equation and hence the same eigenvalues. For a square 
matrix, in ordered to solve problems of determinant and/or eigenvalues, we 
can use its similar matrices which make the problems simpler. 
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Example 3  For invertible matrix  


 
 



  and matrix  



  
  



, we have

   


  

  




  
  





 
 







 
 



.

Hence   is diagonalizable.                                              □

Ÿ http://matrix.skku.ac.kr/RPG_English/8-TF-diagonalizable.html 

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/
                                                                           
A=matrix(QQ, [[1, 1], [-2, 4]])
print A.is_diagonalizable()          # Checking if diagonalizable
                                                                          
True                                                                ■

Example 4 Since every diagonal matrix   satisfies        , it is 
diagonalizable.                                                       ■

Diagonalizable Matrices 

   

Definition  [Diagonalizable Matrices]

Suppose a square matrix   is simlar to a diagonal matrix, that is, 
there exists an invertible matrix   such that     is a diagonal 
matrix. Then   is called diagonalizable and the invertible matrix   is 
called a diagonalizing matrix for  .

   
 If      , then       and hence we have

            ⋯    ( multiplications of    )
          ⋯       
         

 This implies that if a matrix is diagonalizable, then its powers can be very easily 
computed.

http://matrix.skku.ac.kr/RPG_English/8-TF-diagonalizable.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 5 Show that  


 


 

 
 is not diagonalizable.  

Solution

Suppose to the contrary that   is diagonalizable, that is, there exist an 
invertible matrix   and a diagonal matrix   with

 


 


 

 
,  ≠ ,  



 


 

 
,

such that      . Since    , we have 



 


 

 


 


 

 




 


 

 


 


 

 
,

which gives 

 


 

 




 


 

 
. Hence   .

If ≠ , then    and     (≠ ). Hence   . Similarly, we can 
show that   . The conditions     and     give a contradiction to  
 ≠ . Therefore,   is not diagonalizable.                       ■

Equivalent Condition for Diagonalizability

   

Theorem  8.2.4 [Equivalent Condition]
Let   be a square matrix of order . Then   is diagonalizable if and 
only if   has  linearly independent eigenvectors.  Furthermore, if   
is diagonalizable, then   is similar to diagonal matrix   whose main 
diagonal entries are equal to the eigenvalues  …   of  , and the 
th column of a diagonalizing matrix   is an eigenvector of   
corresponding to eigenvalue . 

Proof  ⇒  If   is diagonalizable, then there exists an invertible matrix 

  p   p   ⋯  p  
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Example 6
It can be shown that the matrix  



  
  



 has eigenvalues 

      and their corresponding eigenvectors are 

       such that       where   diag  ⋯  . Since    , we get 
p   p  p   p  …  p   p  . Hence   …   are 
eigenvalues of   and    . Note that p  p  … p   are eigenvectors 
corresponding to       …    , respectively. Since   is 
invertible, it follows that its columns p  p  … p   are linearly 
independent. 

       ⇐  Suppose   has eigenvalues   …   and their corresponding 
eigenvectors p  p  … p   that are linearly independent. Then we can 
construct a matrix   as follows:

  p   p   …  p   .
Then

  p   p   …  p    p   p   ⋯  p  

           p   p   ⋯  p  






  ⋯ 

  ⋯ 
⋮ ⋮ ⋱ ⋮
  ⋯ 





  .

       Since the columns of   are linearly independent, the matrix   is invertible, 
giving      . Therefore   is diagonalizable.                       ■

[Remark]  Procedure for diagonalizing a matrix 

Ÿ Step 1: Find  linearly independent eigenvectors p  p  … p   of  .
Ÿ Step 2: Construct a matrix   whose columns are p  p  … p   in this 

order.
Ÿ Step 3: The matrix  diagonalizes   and     is a diagonal matrix whose 

main diagonal entries are eigenvalues  …   of 
  diag  …  .
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x 


 



 x 



 



, respectively.  Since these eigenvectors are linearly 

independent, by Theorem 8.2.4,   is diagonalizable. If  

x x  


  
 



, then we have

        


   
  



 

  
  



 

  
 







 
 



                        ■

Example 7
Show that  




    
  
  




  is diagonalizable and find the diagonalizing 

matrix   of  .

Sage  http://sage.skku.edu or  http://mathlab.knou.ac.kr:8080/
                                                                           
A=matrix([[0, 0, -2], [1, 2, 1], [1, 0, 3]])
print A.eigenvalues()           # Eigenvalue Computation
                                                                          
[1, 2, 2]

  has eigenvalues      . We now compute linearly independent 
eigenvectors of  .

For   , we solve x x (that is,  x  ) for x.
                                                                                  
E=identity_matrix(3)
print (E-A).echelon_form()
                                                                          
[ 1  0  2]
[ 0  1 -1]
[ 0  0  0]

Since x










  



 










 



  ∈ , we get x 










 



; For   , we solve 

x x (that is,  x  ) for x.
                                                                                  
print (2*E-A).echelon_form()
                                                                          

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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[1 0 1]
[0 0 0]
[0 0 0]

This gives  x










 



 










 



 











  ∈  and hence 

   x 










 



 x 













.

                                                                           
x1=vector([-2, 1, 1])
x2=vector([-1, 0, 1])
x3=vector([0, 1, 0])
P=column_matrix([x1, x2, x3])
print P
print
print P.det()
                                                                          
[-2 -1  0]
[ 1  0  1]
[ 1  1  0]

1
Since the above computation shows that the determinant of   is not 
zero,   is invertible. Hence its columns x x x  are linearly 
independent. Therefore, by Theorem 8.2.4,   is diagonalizable.      
                                                                           
print P^-1*A*P # Computing diagonal matrix whose main diagonal entries  
                # are eigenvalues of A.
                                                                          
[1 0 0]
[0 2 0]
[0 0 2]                                                                ■

   

Theorem  8.2.5
If x x … x are eigenvectors of     ×   corresponding to distinct 
eigenvalues   … , then the set x x … x  is linearly 
independent. 

Proof  (Exercise) Hint. This can be proved by the mathematical induction .
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Example 8 The matrix  


  
  



  in Example 6 has two distinct eigenvalues. Thus, 

by Theorem 8.2.6,   is diagonalizable.                              ■

   

Theorem  8.2.6
If a square matrix   of order   has   distinct eigenvalues, then   is 
diagonalizable.

Proof  Let x x … x  be eigenvectors of   corresponding to distinct eigenvalues
   …  . Then, by Theorem 8.2.5, the eigenvectors are linearly 
independent. Therefore, Theorem 8.2.4 implies that   is diagonalizable.      
                                                                       ■

 Note that a diagonal matrix   can have a repeated eigenvalue. Therefore, the 
converse of Theorem 8.2.6 is not necessarily true. 

Algebraic Multiplicity and Geometric Multiplicity of an Eigenvalue

   

Definition  [Algebraic and Geometric Multiplicity]

Let   …  be distinct eigenvalues of     ×  . Then the 
characteristic polynomial of   can be written as

In the above expression the sum of the exponents   …  is 
equal to . The positive integer   is called the algebraic multiplicity 
of   and the number of linearly independent eigenvectors 
corresponding to the eigenvalue   is called the geometric multiplicity 
of  . 

   



- 311 -

   

Theorem  8.2.7 [Equivalent Condition for Diagonalizability]
Let   be a square matrix of order  . Then   is diagonalizable if and 
only if the sum of the geometric multiplicities of eigenvalues of   is 
equal to . 

Proof  By Theorem 8.2.4 an equivalent condition for a square matrix   of order 
  to diagonalizable is to have  linearly independent eigenvectors. Since 
the sum of the geometric multiplicities of eigenvalues of   is equal to the 
number of linearly independent eigenvectors of   and it is equal to , the 
result follows.                                                         ■

   

Theorem  8.2.8 
Let   be a square matrix and  be an eigenvalue of  . Then the 
algebraic multiplicity of  is greater than or equal to the geometric 
multiplicity of .  

Proof  Let  be the geometric multiplicity of an eigenvalue  of  , and let   be 
the × matrix whose columns are the  linearly independent eigenvectors of   
corresponding to eigenvalue . We can construct an invertible matrix   by adding 
  linearly independent columns to  . Let     be the resulting invertible 

matrix and let  










  be the inverse of  . Then      




 


 

 
. Note 

that   and     have same characteristic polynomials. Since     has first 
 columns have  in its diagonal, the characteristic polynomial of     has a 
factor of at least  . Hence, the algebraic multiplicity of  is greater than or 
equal to the geometric multiplicity of .                                          ■

   

Theorem  8.2.9 [Equivalent Condition for Diagonalizability]
Let   be a square matrix of order . Then   is diagonalizable if and 
only if each eigenvalue  of   has the same algebraic and geometric 
multiplicity. 

Proof If   is diagonalizable, then there exists an invertible matrix   and a 
diagonal matrix   such that      , or equivalently    . This implies 
that   times column   of   is equal to scalar multiple of the column   of  . 
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Example 9
For  









  

  
   

, its characteristic equation is   

       . Hence the eigenvalues of   are      and 
    has algebraic multiplicity 2.  The following two vectors are linearly 
independent eigenvectors of 

x 










 


, x 













.

However, matrix   cannot have three linearly independent eigenvectors 
and hence Theorem 8.2.4 implies that   is not diagonalizable.       ■

Hence, all the  columns of   are eigenvectors of  , which implies that each 
eigenvalue of   has the same algebraic and geometric multiplicity. The converse 
is also true by Theorem 8.2.5.                                                  ■

Example 10
It can be shown that  









   

  
   

 has eigenvalues 3 and   with 

algebraic multicity 1 and 2 respectively, We can further show that 
geometric multiplicity of 3 and 2 are 1 and 2 respectively. Hence   is 

diagonalizable. It can be verified  








   

  
  

 diagonalizes   and 

     , where  








  

  
  

. Let us further compute   .

       








   

  
  










  

  

  











    
   
   










   

   
   

  ■
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Example 1

For  








 










 














, we have  














 









 








. Since

8.3  Lecture Movie : http://youtu.be/jimlkBGAZfQ,  http://youtu.be/B--ABwoKAN4 

 ab : http://matrix.skku.ac.kr/knou-knowls/cla-week-11-sec-8-3.html 

Diagonalization with orthogonal matrix, *Function of matrix

Symmetric matrices appear in many applications. In this section, 
we study useful properties of symmetric matrices and show that 
every symmetric matrix is orthogonally diagonalizable.  
Furthermore, we study matrix functions using matrix 
diagonalization.

Orthogonal Matrix

   

Definition  [Orthogonal Matrix]

For real square matrix  , if   is invertible and      , then   is 
called an orthogonal matrix. 

   

   

Theorem  8.3.1
If   is an orthogonal matrix of order , then the following hold:

(1) The rows of   are unit vectors and they are perpendicular to each 
other.
(2) The columns of   are unit vectors and they are perpendicular to 
each other. 
(3)   is invertible.
(4) x  x for any × vector x (Norm Preserving Property).

Proof Similar to the proof of Theorem 6.2.3.

http://youtu.be/jimlkBGAZfQ
http://youtu.be/B--ABwoKAN4
http://matrix.skku.ac.kr/knou-knowls/cla-week-11-sec-8-3.html
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  ,   is an orthogonal matrix.   ■

Example 2
The symmetric matrix  




    

   
   




 has characteristic equation  

          and hence its eigenvalues are  

 The inverse of an orthogonal matrix can be obtained by taking transposition of 
the orthogonal matrix. 

   

Definition  [Orthogonal Similarity]

Let   and   be square matrices of the same order. If there exists an 
orthogonal matrix   such that     , then  is said to be 
orthogonally similar to  .

   

Definition  [Orthogonally Diagonalizable]

For a square matrix  , if there exists an orthogonal matrix 
diagonalizing  , then   is called orthogonally diagonalizable and   is 
called a matrix orthogonally diagonalizing  .

 What matrices are orthogonally diagonalizable?  (Symmetric Matrices)

   

Theorem  8.3.2
Every eigenvalue of a real symmtric matrix is a real number. 

Proof  (Exercise) http://www.quandt.com/papers/basicmatrixtheorems.pdf 

http://www.quandt.com/papers/basicmatrixtheorems.pdf
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          that are all real numbers.                ■

   

Theorem  8.3.3
If a square matrix   is symmetric, then eigenvectors of   corresponding 
to distinct eigenvalues are perperdicular to each other. 

Proof  (Exercise) http://www.quandt.com/papers/basicmatrixtheorems.pdf 

   

Theorem  8.3.4
Let   be a square matrix. Then   is orthogonally diagonalizable if and 
only if the matrix   is symmetric. 

Proof  (⇒ ) Suppose   is orthogonally diagonalizable. Then there exist an 
orthogonal matrix   and a diagonal matrix   such that     . Since 
    , we have

             .
       Hence

             ⇔           

                         ⇔             

                         ⇔    

       Therefore,   is symmetric.  

       (⇐ ) : Exercise                                                            ■

   

Theorem  8.3.5
If   is a symmetric matrix of order , then   has  eigenvectors 
forming an orthonormal set. 

Proof  Since   is symmetric, by Theorem 8.3.4,   is orthogonally diagonalizabl, 
that is, there exist an orthogonal matrix   and a diagonal matrix   such 
that     . Hence the main diagonal entries of   are the eigenvalues 
of   and the columns of   are  eigenvectors of  . Since the columns of 

http://www.quandt.com/papers/basicmatrixtheorems.pdf
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Example 3
For symmetric matrix  











    
   
  

, find an orthogonal matrix   

diagonalizing  .

Solution

Since the characteristic equation of   is        , the 
eigenvalues of   are   ,     . Note that all the eigenvalues 
are distinct. Hence there exist eigenvectors of   that are orthogonal:

x 




 
 





 x 




 
 





 x 










.

By normalizing x x x , we get an orthogonal matrix   diagonalizing 
 :

















































































 ∴  






































     ■

the orthogonal matrix   form an orthognormal set, the  eigenvectors of 
  are orthonormal.                                                     ■

   

Theorem  8.3.6
For a square matrix   of order , the following are equivalent:

(1)   is orthogonally diagonalizable.
(2)   has  eigenvectors that are orthonormal. 
(3)   is symmetric. 

 How to find an orthogonal matrix   diagonalizing a given symmetric matrix ?
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Example 4
It can be shown that the matrix  









  

  
  

 has eigenvalues     

(algebraic multiplicity 2) and   . Hence we need to check if     
has two linearly independent eigenvectors. After eigenvector computation, 
we get

   x 




 






 x 





 








that are linearly independent eigenvectors corresponding to eigenvalue 
-3. Using the Gram-Schmidt Orthonormalization, we get

   y  x 










 



, y  x y


x⋅ y y 










 



 











 















 



 




 

   z y

y






















, z y

y
























.

We can find an eigenvector x 



 






  corresponding to the eigenvalue 

   and normalization gives

   z 






















.

Therefore, the orthogonal matrix    diagonalizing   is given by 

  z  z  z  


























 










.                               ■
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 [Remark] * Function of Matrices
Ÿ There are several techniques for lifting a real function to a square matrix 

function such that interesting properties are maintained. You can read the 
details in the following: 

Ÿ https://en.wikipedia.org/wiki/Matrix_function 
Ÿ http://youtu.be/B--ABwoKAN4

 

[Automobiles with polygonal wheels and the roads 
customized to the polygonal wheels] 

https://en.wikipedia.org/wiki/Matrix_function
http://youtu.be/B--ABwoKAN4
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Figure 1

8.4  Lecture Movie : http://youtu.be/vWzHWEhAd-k, http://youtu.be/lznsULrqJ_0  

 Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-12-sec-8-4.html 

Quadratic forms 

A quadratic form is a polynomial each of whose terms is quadratic. 
Quadratic forms appear in many scientific areas including 
mathematics, physics, economics, statistics, and image processing. 
Symmetric matrices play an important role in analyzing quadratic 
forms. In this section, we study how diagonalization of symmetric 
matrices can be applied to analyse quadratic forms. 

   

Definition

An implicit equation in variables ,  for a quadratic curve can 
expressed as
                  .                      (1)
.
This can be rewritten in matrix-vector form as follows:

       

 


 

 


 





   



 





   .                      (2)

  

[Remark] Graph for a quadratic curve (conic section)

The following are the types of conic sections:
① Non-degenerate conic sections: Circle, Ellipse, Parabola, Hyperbola. See 
Figure 1.
② Imaginary conic section: There are no points  ∈   satisfying (1)
③ Degenerate conic section: The graph of the equation (1) is one point, one 

line, a pair of lines, or having no points.  

      

http://youtu.be/vWzHWEhAd-k
http://youtu.be/lznsULrqJ_0
http://matrix.skku.ac.kr/knou-knowls/cla-week-12-sec-8-4.html
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Example 1 (Non-degenerate conic section)

Since the equation         can be written as 


 


 , the 

graph of this equation is an ellipse. The equation        has 

the standard form 


 


  and hence its graph is a hyperbola. Since 

the equation      can be put into   , its graph is a 
parabola.  

Sage  http://sage.skku.edu or  http://mathlab.knou.ac.kr:8080/

[Remark] Conic Sections in the Standard Position

Ÿ    



 



  (Ellipse)                                                 (3)

Ÿ       



 



  or 



 



  (Hyperbola)                          (4)

Ÿ          or    (Parabola,   )                             (5)

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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var('x,y')
implicit_plot(9*x^2+4*y^2-144==0,(x,-8,8),(y,-8,8),axes=True,figsize=5)
                                                                          

                            ■

Example 2 (Degenerate conic section)
The graph of the equation     is the  -axis. The graph of       
consists of the two horizontal lines   ,   . The graph of 
     consists of the two lines    and   . The graph of 
     consists of one point  . The graph of      has 
no points.                                                             ■

Example 3 Let us plot the graph of         . By completing 
squares in         , we get

             .                            (6)

Hence by using the substitutions ′    ′   , we get 



′


′
 

 The graph of a quadratic equations with both   and   terms or both   and 
terms is a translation of a conic section in the standard position.  
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in the ′ ′-coordinate plane. This equation gives a hyperbola of the 
standard position in the ′ ′-coordinate plane. Hence the graph of the 
equation (6) is obtained by translating the hyperbola in the standard 
position 3 units along the -axis and 1 unit along the -axis.  

Sage  http://sage.skku.edu or  http://mathlab.knou.ac.kr:8080/
                                                                           
var('x,y')
c1=implicit_plot(x^2/3-y^2/3-1==0,(x,-8,8),(y,-8,8),axes=True,figsize=5,color
='red')
c2=implicit_plot((x-3)^2/3-(y-1)^2/3-1==0,(x,-8,8),(y,-8,8),axes=True,figsize=
5,color='blue')
c1+c2
                                                                          

                  ■

Example 4 The quadratic equations        are quadratic forms, but 
the quadratic equation         has a linear term    and 

Quadratic Form

   

Definition  [Quadratic Form]

    

 


 

 


 





                            (7)

is called the quadratic form of the quadratic equation (1).

   

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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constant term 1 and hence it is not a quadratic form.                 ■

 A quadratic form can be written in the form of xx. For example,

        


 


  

  


 





 or         



 


  

 


 





. 

This means that the matrix   above is not unique.

 We will use a symmetric matrix   to write a quadratic form:

                    










 










 





 

                        











 








 




















. 

   We use symmetric matrices to represent quadratic forms because symmetric 
matrices are orthogonally diagonalizable.  

   

Definition

Let     be a symmetric matrix of order  and x 













⋮


 for  

real values    …  . Then x 〈xx〉 xx  
   



  is 

called a quadratic form in ℝ .

   

 For a quadratic form in  and , the  -term is called a cross-product term. 
Using orthogonal diagonalization, we can eliminate the cross-product term.
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Example 5 Using diagonalization of a quadratic form, determine which conic section 
the following quadratic equation describes. 

 For a quadratic form
 x  xx      ,

  the matrix  


 


 

 
 is symmetric, we can find orthonormal eigenvectors v v  

corresponding to the eigenvalues  ,   of  . The matrix   v v  is 

orthogonal and   orthogonally diagonalizes  , that is,   



 


 

 
. Since 

we can switch the roles of v  and v  by switching the roles of   and  , 
without loss of generality, we can assume det   .

  Therefore, we can consider   as the rotation matrix 

 


cos  sinsin cos  in   . Let 

x   x ′  for some x′  

 


′

′ . Then 

x  xx x′x′  x′  x′
                          ′ ′ 


 


 

 



 


′

′   ′  ′

  and hence   is a quadratic form without any cross-product term in the ′ ′
-coordinate system. Therefore, we get the following theorem.

   

Theorem  8.4.1 [Diagonalization of a Quadratic Form] 
Suppose a symmetric matrix     ×   has    as its eigenvalues. 
Then, by rotating the coordinate axes, the quadratic form  x   xx  
can be written as follows in the ′ ′-coordinate system

      x   ′  ′ .                        (8)

If the determinant of   is 1 and  diagonalizes  , then the rotation 
can be obtained by  x x′ or x x′.
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            .                         (9)

Solution

The quadratic equation         can be written as

xx  


 


 

 


 





 .

Since the characteristic equation of the symmetric matrix   is 
              , the eigenvalues of   are  
     . By Theorem 8.4.1, x   xx  ′  ′ . Hence, in 
the new coordinate system, the quadratic equation becomes

′  ′   .

Since eigenvectors corresponding to        are

v 
















 v 
















,

respectively, the orthogonal matrix   
diagonalizing   is 

 



























 


cos °  sin  °sin  ° cos ° .

Therefore ′′-coordinate axes are obtained by rotating the -axis 45° 
clockwise and the equation (9) is an ellipse in the standard position 
relative to the ′′-coordinate system.          ■

Example 6
Sketch the graph of the following quadratic equation

               .              (10)

Solution
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Letting  


 


  

  
       x 


 





, we can rewrite the 

equation (10) as follows:

      xxx    .                                (11)

Using rotation we first eliminate the cross-product terms. Since the 
characteristic equation of   is

        , 

the eigenvalues of   are   ,     and their corresponding 

orthonormal eigenvectors are  v  
 

 





, v  

 

 


 


, respectively. 

Hence we can take   v∶v  

 

 


  

 
.

Using axis rotation x x′, we get xx′ ′  and x

x′ ′  and hence from (11) we obtain

      ′ ′  ′   .                   (12)

We now use horizontal translation to remove ′-term in (12). By 
completing the squares in (12) we get

′  ′  ′     . 

That is, ′  ′  . Therefore, the equation (12) repesents 
an ellipse in the  ″ ″-coordinate system

                               



″


″
           

 where the  ″ ″-coordinate     
 system is obtained by 
 horizontally translating the  ′ ′
 -coordinate system 1 unit along 
 the  ′-axis.             ■
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[Remark] Simulation for quadratic forms

Ÿ http://www.geogebratube.org/student/m121534

 

Surface in 3-dimensional space

 Let  

                                                           (13)

Then, after diagonalization, we get  

                         ′  ′                                (14)

in the rotated ′′-coordinate system. This enables us to identify the graph of the 
equation (13) in ℝ . 
 
In equation (14), if both  ,   are positive, then the graph of equation (14) is a 
paraboloid opening upward (see figure (a) below). If both   and   are negative, 
then the graph is a paraboloid opening downward (see figure (b) below). Since the 
horizontal cross-section of each paraboloid is an ellipse, the above graphs are 
called elliptic paraboloids.

http://www.geogebratube.org/student/m121534
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Example 7 Show that the graph of the following equation is an elliptic paraboloid 
and sketch its cross-section at   .

                                     (15)

Solution

The quadratic form in (15) can be written as     


   
  









. We 

first find an orthogonal matrix   diagonalizing the symmetric matrix 


   
  



. It can be shown that   

 

 





 


, and hence using 

x x′, we can transform (15) into the following:

        ′  ′                           (16)

The equation (16) represents an elliptic paraboloid in the  ′ ′
-coordinate system. Note that the ′′-coordinate system is obtained by 

Elliptic Paraboids

 In (14) if both of   and   are nonzero but have different signs, then  the 
graphs looks like a saddle in (a) and is called a  hyperbolic paraboloid. If one of 
  and   is zero, then the graph is parabolic cylinder in (b).
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rotating the -coordinate by angle   counterclockwise. Hence, in 
x x′,   is given by

  
 

 





 





 


cos  sinsin cos

and   tan  
  . Now we sketch the cross-section of equation (15) at

  . By substituting     into (16), we get 
′



′
  and hence 

the graph looks like the following:                                         

□

Sage  Let use Sage to graph equation (15)
            http://sage.skku.edu

① Computing eigenvalues of 
                                                                           
A=matrix(2, 2, [34, -12, -12, 41])
print A.eigenvalues()
                                                                          
[50, 25]

② Computing eigenvectors of 
                                                                           
print A.eigenvectors_right()
                                                                          
[(50, [(1, -4/3)], 1), 
(25, [(1, 3/4)], 1)]

③ Computing   diagonalizing 
                                                                           
G=matrix([[1, 3/4], [1, -4/3]])  # Constructing a matrix whose columns    

http://sage.skku.edu
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                                # are eigenvectors
P=matrix([1/G.row(j).norm()*G.row(j) for j in range(0,2)])
# Normalizing the row vectors (The orthogonality follows from the fact # 
that the eigenvalues are distinct)
P=P.transpose()  # Constructing a matrix whose columns are orthonormal  
                 # eigenvectors 
print P
                                                                          
[ 4/5  3/5]
[ 3/5 –4/5]

④ Sketching two ellipses simultaneously
                                                                           
var('u, v')
s=vector([u, v])
B=P.transpose()*A*P
p1=implicit_plot(s*A*s==50, (u, -2, 2), (v, -2, 2), axes='true')
p2=implicit_plot(s*B*s==50, (u, -2, 2), (v, -2, 2), color='red', axes='true')
show(p1+p2)  # Ploting two graphs simultaneously
                                                                          

                                       ■
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8.5  Lecture Movie : http://youtu.be/cOW9qT64e0g 

 Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-12-sec-8-5.html 

*Applications of Quadratic forms

By the theorem of principal axis (theorem 8.4.1), the graph of a 3D 
curve is shown in the form of an plane, ellipse or parabola in 2D. The 
specific shape is uniquely determined by signs of eigenvalues of the 
corresponding quadratic form. In this section, we define the sign of the 
quadratic form to identify the type of graph of given quadratic forms, 
and learn how to obtain the extrema of multivariable functions using 
them.

 Given a system of springs and masses, there will be one quadratic form that 
represents the kinetic energy of the system, and another which represents the 
potential energy of the system in position variables. It can be found in the 
following websites: 

l Application of Quadratic Forms and Sage:
        http://matrix.skku.ac.kr/2014-Album/Quadratic-form/ 
l http://ocw.mit.edu/ans7870/18/18.013a/textbook/HTML/chapter32/section09.html 

http://youtu.be/cOW9qT64e0g
http://matrix.skku.ac.kr/knou-knowls/cla-week-12-sec-8-5.html
http://matrix.skku.ac.kr/2014-Album/Quadratic-form
http://ocw.mit.edu/ans7870/18/18.013a/textbook/HTML/chapter32/section09.html


- 332 -

8.6  Lecture Movie : https://youtu.be/ejCge6Zjf1M,  http://youtu.be/7-qG-A8nXmo  

 Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-12-sec-8-6.html 

SVD and generalized eigenvectors

We have learned that symmetric matrices are diagonalizable. We 
now extend the concept of diagonalization to × matrices (not 
necessarily square or symmetric) resulting in a matrix 
decomposition and study pseudoinverses and least squares solution 
using the matrix decomposition. 

   

Theorem  8.6.1 [Singluar Value Decomposition]
Let   be an × real matrix. Then there exist orthogonal matrices   
of order  and   of order , and an × matrix   such that  

       
   , (1)

where the main diagonal entries of   are positive and listed in the 
monotonically decreasing order, and   is a zero-matrix. That is, 

     u u ⋯ u u   ⋯ u











    ⋯ 

   ⋯ 
⋱  ⋮ ⋮

    ⋯ 
       
  ⋯    ⋯ 
⋮ ⋮ ⋮  ⋮ ⋮
  ⋯    ⋯ 











v


v


⋮
v


,

where  ≥  ≥ ⋯≥   .

   

Definition

Equation (1) is called the singular value decomposition (SVD) of  . 
The main diagonal entries of the matrix   are called the singular 
values of  . In addition, the columns of   are called the left singular 
vectors of   and the columns of   are called the right singular 
vectors of  . 

 The following theorem shows that matrices   and   are orthogonal matrices 
diagonalizing    and   , respectively.

https://youtu.be/ejCge6Zjf1M
http://youtu.be/7-qG-A8nXmo
http://matrix.skku.ac.kr/knou-knowls/cla-week-12-sec-8-6.html
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Example 1 Find the SVD of  



 


 

 
.

Solution

The eigenvalues of   



 


 

 




 


 

 





 


 

 
 are    

   and hence the singular values of   are 
         .

A unit eigenvector of    corresponding to    is v 
















, and a 

unit eigenvector of    corresponding to     is v 

















. We 

can also find unit eigenvectors of   :

u  


v 
















 u  


v 










 





.

   

Theorem   8.6.2
Let the decomposition      be the singular value decomposition 
(SVD) of an ×  ≥  matrix   where    are positive diagonal 
entries of  . Then 

 (1)     diag
 

 …  
  …  

 × 
.

 (2)     diag
 

 …  
  …   

 × 
.

Proof  Since     , it follows that     . Hence, by considering,    
and  , we get

     ′  diag
 

 …  
  …  

 × 
  and

      diag
 

 ⋯  
  …  

 ×
,

       respectively.                                                             ■
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Hence we get

   u u 












  







    v v 























. 

Therefore, the SVD of   is

    ⇔ 


 


 

 













  










 


 

 






















.      □ 

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/

① Computing the singular values of   and eigenvectors of  

                                                                           
A=matrix([[sqrt(3), 2], [0, sqrt(3)]])
B=A.transpose()*A
eig=B.eigenvalues()
sv=[sqrt(i) for i in eig]                # Computing singular values
print B.eigenvectors_right()           # Computing eigenvectors of  

                                                                          
[(9, [(1, sqrt(3))], 1), (1, [(1, -1/3*sqrt(3))], 1)]

② Computing    
                                                                           
G=matrix([[1, sqrt(3)], [1, -1/3*sqrt(3)]])
Vh=matrix([1/G.row(j).norm()*G.row(j) for j in range(0,2)])
Vh=Vh.simplify()    # Transpose of V
print Vh
                                                                          
[        1/2 1/2*sqrt(3)]
[1/2*sqrt(3)        -1/2]

③ Computing eigenvectors of  

                                                                           
C=A*A.transpose()
print C.eigenvectors_right()          # Computing eigenvectors of  

                                                                          
[(9, [(1, 1/3*sqrt(3))], 1), (1, [(1, -sqrt(3))], 1)]

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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④ Computing   
                                                                           
F=matrix([[1, 1/3*sqrt(3)], [1, -sqrt(3)]])
U=matrix([1/F.row(j).norm()*F.row(j) for j in range(0,2)])
U=U.simplify().transpose()    # U
print U
                                                                          
[ 1/2*sqrt(3)          1/2]
[         1/2 –1/2*sqrt(3)]

⑤ Computing diagonal matrix   
                                                                           
S=diagonal_matrix(sv); S
                                                                          
[3 0]
[0 1]

⑥ Verifying      
                                                                           
U*S*Vh
                                                                          
[sqrt(3)       2]
[      0 sqrt(3)]                                                       ■

Equivalent statement of invertible matrix on SVD

   

Theorem  8.6.3
Let   be an × matrix. Then   is a nonsingular matrix if and only 
if every singular value of   is nonzero. 

Proof  Since det   det , matrix   is nonsingular if and only if    is 
nonsingular. Hence, if   is nonsingular, then all the eigenvalues of    
are nonzero. By Theorem 8.6.2, the singular values of   are the square 
roots of the positive eigenvalues of   . Hence the singular values of   
are nonzero.                                                             ■
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Theorem  8.6.4
Suppose  ≥  ≥ ⋯≥   are the singular values of an × matrix  . 
Then the matrix   can be expressed as follows:

  
  



uv
 .                         (R)

The equation (R) is called a rank-one decomposition of  .

 Note that the pseudoinverse of a matrix is important in the study of the least  
  squares solutions for optimization problems.

 We can express an × nonsingular matrix   using the SVD

    . (2)

  Note that all of  ,  ,   are × nonsingular matrices and , in particular,   
 ,   are orthogonal matrices. Hence the inverse of   can be expressed as

       . (3)

 If   is not a square matrix or   is singular, then (3) does not give an inverse 
of  . However, we can construct a pseudoinverse  †  of   by putting   in (2) 

into the form  



 


 

 
(where   is nonsingular).

   

Definition  [Pseudo-Inverse]

For an × matrix   the × matrix  †   ′   is called a 
pseudo-inverse of  , where  ,   are orthogonal matrices in the SVD 
of    and ′ is

 ′  


 




  
 

 (where   is nonsingular).

   
 We read  †  as   ‘dagger.’ If    , then we define  †   .

 Truncated SVD 
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Example 2
Find a pseudo-inverse of  









 

 
 

.

Solution

We first compute the (truncated) SVD1) of  :
http://matrix.skku.ac.kr/2014-Album/MC.html 
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v



v
  
































 


 

 























.

Then

    †  v v 















 






 


u



u








































 




















 





    

      













 











 


.                                                  ■

http://langvillea.people.cofc.edu/DISSECTION-LAB/Emmie'sLSI-SVDModule/p5module.html

What is a truncated SVD?

We learned that singular value decomposition factors any matrix   so that 

       . Let's take a closer look at the matrix  . Remember  



 


 

 
 is a 

diagonal matrix where  











 

⋮ ⋮ ⋮
 ⋯ 

 and  ≥  ≥ ⋯≥    are the 

singular values of the matrix  . A full rank decomposition of   is usually denoted 
by     

  where   and   are the matrices obtained by taking the first  
columns of   and  , respectively. We can find a -rank approximation (or 
truncated SVD) to   by taking only the first k largest singular values and the first 
k columns of U and V.

1) http://langvillea.people.cofc.edu/DISSECTION-LAB/Emmie'sLSI-SVDModule/p5module.html 

http://langvillea.people.cofc.edu/DISSECTION-LAB/Emmie'sLSI-SVDModule/p5module.html
http://matrix.skku.ac.kr/2014-Album/MC.html
http://langvillea.people.cofc.edu/DISSECTION-LAB/Emmie'sLSI-SVDModule/p5module.html
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Ÿ http://matrix.skku.ac.kr/RPG_English/8-MA-pseudo-inverse.html 

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/
                                                                           
A=matrix(RDF,[[1,1],[0,1],[1,0]])
import numpy as np
Pinv=matrix(np.linalg.pinv(A))
Pinv
                                                                          

[ 0.333333333333 -0.333333333333  0.666666666667]
[ 0.333333333333  0.666666666667 -0.333333333333]

 If     ×   has rank   , then   is said to be of the full column rank. If 
  has full column rank, then    is nonsingular. If   is nonsingular, then the 
pseudo-inverse of   is equal to    . 

   

Theorem  8.6.5
If an × matrix   has full column rank, then the pseudo-inverse of 
  is

 †      .

Proof  Let    　be the SVD of  . Then  



 





 where   is nonsingular. 

Then

       
  .

      Since   has full column rank,    is nonsingular and matrix   is an ×

orthogonal matrix. Hence     
    and

    
    

    
                      

           
      † .              ■

http://matrix.skku.ac.kr/RPG_English/8-MA-pseudo-inverse.html
http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 3 Find the pseudo-inverse of   using theorem 8.6.5.

        








 

 
 

.

Solution

Since   has full column rank, 

     


 


  

  









 

 
 




 


 

 
 is nonsingular and

    †      













 



 







 


  

  














 












 


.              ■

   

Theorem  8.6.6
If  †  is a pseudo-inverse of  , then the following hold:

 (1)  †    
 (2)  † †   †  
 (3)  †   †  
 (4)  †   †  
 (5)  †   †  
 (6)  ††   . 

Proof (Exercise)

[Remark] 
A pseudo-inverse provides a tool for solving a least sqaures problem. It is known that 
the least squares solution to the linear system x b is the solution to the normal 
equation  x  b . If   has full column rank, then the matrix    is nonsingular 
and hence 

                     x     b   † b.

This means that if   has full column rank, the least squares solution to x b is the 
pseudo-inverse  †  times the vector b.
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Example 4 Find the least squares line passing through the four points  
       .

Solution  
  Let      be an equation for the line that fits to the points 

       . Then, by letting x b m T, the given 
condition can be written as the linear system x b for which 

 











 
 
 
 

 and b 
















.

  Since   has full column rank, we get  †      which is 

    † 














 

 







 


   

   
. Hence x  †b 














. Therefore, the least 

squares line is given by    
 .                    ■

 

   

Theorem  8.6.7
Let   be an × matrix and b be a vector in ℝ . Then x  †b is 
the least squares solution tox b.

Proof  Let      be the SVD of   with  



 


 

 
(  is nonsingular). Then 

 †   ′ 



 




  
 

   and hence  †b  ′ b, Since

             †b    ′ b  ′ b
                       




 




 
 




 




  
 

 b  b   b,

       it follows that x  †b satisfies  x  b.              ■
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var('x, y')
p1=plot(x + 3/2, x, -1,3, color='blue');
p2 = text("$x+ 3/2 $", (2,2), fontsize=20, color='blue')
show(p1+p2, ymax=4, ymin=-1)
in http://matrix.skku.ac.kr/Cal-Book/part1/CS-Sec-1-3.htm 

Team <3D Math> comprises Professor Sang-Gu LEE, and 3 mathematics major students 
including Jaeyoon LEE, Victoria LANG, Youngjun LIM, won the prize with ‘DIY Math Tools 
with 3D printer’ for the Korea Science and Technology Idea Competition 2014 co-organized 
by the Korea Foundation for the Advancement of Science and Creativity, the Ministry of 
Science, ICT and Future Planning, the National Museum of Science and YTN.

https://www.facebook.com/skkuscience 

http://matrix.skku.ac.kr/Cal-Book/part1/CS-Sec-1-3.htm
https://www.facebook.com/skkuscience
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8.7  Lecture Movie :  http://youtu.be/8_uNVj_OIAk,  http://youtu.be/Ma2er-9LC_g

 Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-13-sec-8-7.html

Complex eigenvalues and eigenvectors

We have so far focused on real eigenvalues and real eigenvectors. 
However, real square matrices can have complex eigenvalues and 
eigenvectors. In this section, we introduce complex vector spaces, 
complex matrices, complex eigenvalues and complex eigenvectors. 

Complex vector spaces

   

Definition  [Complex Vector Space]

The set of vectors with  complex components is denoted by

   …    ∈     … .

If we define the vector addition and the scalar multiple of a vector in 
   similar to those for ℝ , then    is a vector space over  and its 
dimension is equal to .

   
 If 

e    … , e     … , … , e   …  ,

  then a vector v in    can be expressed as v e  e ⋯ e  where ’s 
are complex numbers, and the set {e , e … e } is a basis for   .  This basis 
is called the standard basis for   .

 For a complex number    ,     is called the conjugate of   and  
      is called the modulus of  . Furthermore, if we denote a complex 

number   as   cos   sin, then    and tan   
 . For a complex vector 

u   …   , we define its conjugate as u  
  … . 

Ÿ [Example] http://matrix.skku.ac.kr/RPG_English/9-VT-conjugate.html 

http://youtu.be/8_uNVj_OIAk
http://youtu.be/Ma2er-9LC_g
http://matrix.skku.ac.kr/knou-knowls/cla-week-13-sec-8-7.html
http://matrix.skku.ac.kr/RPG_English/9-VT-conjugate.html
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Inner product

   

Definition  [Inner Product]

Let u   …   and v   …   be vectors in   . Then
 

u⋅ v   
 ⋯  u v

satisfies the following properties:

(1)  u v v u
(2)  u v w u w v w  
(3)  u v   u v  
(4)  v v≥  in particular,  v v   ⇔ v    

The inner product u⋅ v is called the Euclidean inner product for the 
vector space   . 

   

Definition

Let u   …    v    …    be vectors in   . Then, 
using the Euclidean inner product u⋅ v, we can define the Euclidean 
norm u  of u  and the Euclidean distance u v between u and v  as 
the following: 

(1) u   u⋅ u 




 
  

 ⋯   .
(2) u v  u v     

     
 ⋯    

 .

  
 If u⋅ v  , then we say that u  and v are orthogonal to each other.  
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Example 1 For vectors u     v     , compute the Euclidean 
inner product and their Euclidean distance.  

Solution

   u⋅ v       ⋅      

                            

   u v   u v           

                                            □

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/
                                                                           
u=vector([2*I, 0, 1+3*I])   # I is the imaginary unit.
v=vector([2-I, 0, 1+3*I])
print v.hermitian_inner_product(u)  # Taking the conjugate for v
# < u, v > = v.hermitian_inner_product(u)
print (u-v).norm()
                                                                          
4*I + 8
sqrt(13)                                                                 ■

Complex Eigenvalues and Eigenvectors of Real Matrices

We should first define complex eigenvalues and complex eigenvectors along with 
example.

   

Theorem  8.7.1
If  is a complex eigenvalue of an × real matrix   and x is its 
corresponding eigenvector of  , then the complex conjugate   of  is 
also an eigenvalue of   and x  is an eigenvector corresponding to  .

Proof  Since an eigenvector is a nonzero vector, x≠  and x≠ . Since x x
and   is real (i.e.,   ), it follows that xx x x .          ■

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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Example 2 Show that the eigenvalues of  


 


  

 
 are   ±. In addition show 

that if ≠ , then  can be decomposed into 



 


  

 



 


 

 


 


cos  sinsin cos , 

where  is the angle between the -axis and the line passing through 
the origin and the point  .

Solution

Since the characteristic equation of  is      , the eigenvalues 
of   are   ±. If ≠ , then    cos,   sin. 
Therefore,

    
 


  

 




 


 

 













 










 


   

   


 


cos  sinsin cos  .               ■

Eigenvalues of Real Symmetric Matrices

   

Theorem  8.7.2
If   is a real symmetric matrix, then all the eigenvalues of   are real 
numbers.

Proof  Let  be an eigenvalue of  , that is, there exists a nonzero vector x such 
that x x. By multiplying both sides by x  x  on the left-hand side, we 

get xx x x  xx x⋅ x  x . Hence  x
xx . Since x  is a 

nonzero real number, we just need to show that xx  is a real number. 
Note that

        xx xx x x  xx xx x x xx.

Therefore, xx  is a real number.                                      ■
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“Pure mathematics is, in its way, the poetry of logical 
ideas." 

Albert Einstein (1879–1955)
http://en.wikipedia.org/wiki/Albert_E
instein
He developed the general theory of 
relativity, one of the two pillars of 
modern physics (alongside quantum 
mechanics)

http://en.wikipedia.org/wiki/Albert_E
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Example 1
For matrices  



 


 


 

 



,  


 


  

  
,  



 


 

 
, their 

conjugate transposes are 

8.8  Lecture Movie : http://youtu.be/8_uNVj_OIAk,  http://youtu.be/GLGwj6tzd60  

 Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-13-sec-8-8.html 

Hermitian, Unitary, Normal Matrices

We used   to denote the set of all × real matrices. In this 
section, we introduce    to denote the set of all × 
complex matrices.  Symmetric matrices and orthogonal matrices in 
  can be generalized to be Hermitian matrices and unitary 
matrices in   , We shall further study the diagonalization of 
Hermitian and Unitary matrices.

Conjugate Transpose

   

Definition  [Conjugate Transpose]

For a matrix    ∈ ×  ,   is defined by
 

   ∈ ×  .

The transpose    of the complex conjugate of   is called the 
conjugate transpose and is denoted by   , that is, 
       ×  .

   

[Remark] 
Ÿ The Euclidean inner product in   : u⋅ v vu , u   uu
Ÿ If a matrix   is real, then     .

http://youtu.be/8_uNVj_OIAk
http://youtu.be/GLGwj6tzd60
http://matrix.skku.ac.kr/knou-knowls/cla-week-13-sec-8-8.html
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,  


 


  

  
,  



 


 

 
.                  ■

Example 2 In Example 1 ,  ≠    and hence   is not Hermitian. However, since 
    ,   is Hermitian.                                              ■

   

Theorem  8.8.1 [Properties of Conjugate Transpose]
For complex matrices    and a complex number  , the following 
hold:

 (1)     .
 (2)       .
 (3)      .
 (4)      .

Proof of the above theorem is easy to verify and left as exercises.

Hermitian Matrix

   

Definition  [Hermitian Matrix]

If a complex square matrix   satisfying     ,   is called a 
Hermitian matrix.

   

   

Theorem  8.8.2 [Properties of Hermitian Matrix]
Suppose ∈   is Hermitian. Then the following hold:

(1) For any vector x∈  , the product xx is a real number.
(2) Every eigenvalue of   is a real number. 
(3) Eigenvectors of   corresponding to distinct eigenvalues are
   orthogonal to each other. 

http://people.math.gatech.edu/~meyer/MA6701/module11.pdf 

http://people.math.gatech.edu/~meyer/MA6701/module11.pdf
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Example 3
Let  

















 


 


. Since     ,   is Hermitian. The characteristic 

equation of   is              and hence the 
eigenvalues of   are  1,    , which confirms that all the 
eigenvalues of a Hermitian matrix   are real numbers. Furthermore, it 
can be shown that the eigenvectors x, y, and z  

x   , y    

 

    , z  

 

   
corresponding to   ,    , and    , respectively, are 
orthogonal to each other.                                              ■

Example 4 It can be verified that both matrices   and    below are 
skew-Hermitian:

    


 


 

 
 


  





















   


 







 
    and     ■

Skew-Hermitian Matrices

   

Definition  [Skew-Hermitian Matrix]

If a complex square matrix   satisfies    , then   is called a 
skew-Hermitian matrix. 

   

 Each matrix ∈  can be expressed as      , where   is Hermitian 
and   is skew-Hermitian. In particular, since    is Hermitian and    is 
skew-Hermitian, every complex square matrix   can be rewritten as

  

   


  .
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Example 5 Show that the following matrix   is unitary:

          
 

 


 

 
 

  

Solution

Since    
 

 


 

 
 

  
, the product   

   
 

 


 

 
 

  


 


 

 
 

  




 








  . Hence    a  a  is a 

unitary matrix. We can also show that 

ai⋅ aj  aj ai   i  j 
 i ≠ j .

For example, a⋅ a  a
 a  


     



 


 

 
 .                 ■

Unitary Matrices

   

Definition  [Unitary Matrix]

If matrix  ∈  satisfies     , then   is called a unitary 

matrix. If   is unitary, then      . In addition, if the  th column 
vector of   is denoted by u, then

u ⋅ u   u u   u
 u       

 ≠  
.

Therefore,   is a unitary matrix if and only if the columns of  form 
an orthonormal set in   .
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Example 6 Let  


 




 



 and   

 

 





 
 

. Then it can be checked that   

is a unitary matrix and    
 

 


  

  


 


 

  


 


  

  




 








. 

Therefore,   is unitarily diagonalizable.                                ■

Theorem  8.8.3 [Properties of a Unitary Matrix]
Suppose    has the Euclidean inner product and   is a unitary 
matrix. Then the following hold:

(1) For x y ∈  , x⋅ y  x⋅ y, which implies  x   x .
(2) If  is an eigenvalue of  , then     .
(3) Eigenvectors of   corresponding to distinct eigenvalues are 
orthogonal to each other. 

 The property x  x of a unitary matrix   shows that a unitary matrix is an 
isometry, preserving the norm.

Unitary Similarity and Unitarily Diagonalizable Matrices

   

Definition  [Unitary Similarity and Unitary Diagonalization]

For matrices   ∈  , if there exists a unitary matrix   such 
that     , then we say that   and   are unitarily similar to 
each other. Furthermore, if ∈   is unitarily similar to a 
diagonal matrix, then   is called unitarily diagonalizable. 

   

 If ∈  is unitarily diagonalizable, then there exists a unitary matrix   
such that      diag …   and hence    . Letting 
           ⋯     , we get,

        ⋯          
   

  ⋯  
  . 
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Example 7 Find a unitary matrix   diagonalizing matrix  


 


  

  
.

Solution

The eigenvalues of   are        and their corresponding 
eigenvectors are 

      ⇒ x 


 


 

 
,     ⇒ x 



 


 


.

Letting  u x

x


 

 


 

 
, u x

x


 

 


 


 

 and    u u 

 

 


   

  
, it follows that

      
 

 


   

  


 


  

  


 


   

  




 


 

 
,

where   is a unitary matrix.                                          ■

 This implies that the column    of the unitary matrix   is a unit eigenvector 
of   corresponding to the eigenvalue .

Schur’s Theorem

 Transforming a complex square matrix into an upper triangular matrix

   

Theorem  8.8.4 [Schur’s Theorem] 
A square matrix   is unitarily similar to an upper triangular matrix 
whose main diagonal entries are the eigenvalues of  . That is, there 
exists a unitary matrix   and an upper triangular matrix  such that

      ∈ ,   (  ),
where ’s are eigenvalues of  .

Proof Let   …   be the eigenvalues of . We prove this by mathematical 
induction. First, if    , then the statement holds because    . We now 
assume that the statement is true for any square matrix of order less than or 
equal to .
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① Let x be an eigenvector corresponding to eigenvalue .

② By the Gram-Schmidt Orthonormalization, there exists an orthonormal basis for 
   including  x, say  x z …  z. 

③ Since   is orthonormal, the matrix ≡ x  z  ⋯  z  is a unitary matrix. In 
addition, since x x, the first column of  is x. Hence 

 is of 
the following form:


.




 


 ＊

 
,

  where ∈. Since      , the eigenvalues of  are
    ⋯ .

④ By the induction hypothesis, there exists a unitary matrix ∈  such 
that



 











 

⋮ ⋱ ⋮
 ⋯ 

.

⑤ Letting  ≡










  ⋯ 

⋮


∈  , we get

   
  


 











 

  
 
⋮ ⋮ ⋱ ⋮
  ⋯ 

.

  Since  ≡  is a unitary matrix, the result follows.                    ■

 [Lecture on this proof] http://youtu.be/lL0VdTStJDM 

 Not every square matrix is unitarily diagonalizable. (see Chapter 10)

   

[Issai Schur(1875-1941, Germany)] http://en.wikipedia.org/wiki/Issai_Schur 



http://youtu.be/lL0VdTStJDM
http://en.wikipedia.org/wiki/Issai_Schur
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Example 8 It can be shown that the following matrices   and   are normal:

      












 


 


 


 

 








    

    
      

                        

                                                     ■

Example 9 A Hermitian matrix   satisfies      and hence       . This 
implies that any Hermitian matrix is normal. In addition, since a unitary 
matrix   satisfies       , it is a normal matrix.              ■

Example 10
Let    



 


 

  
 and  

 

 


  

  
.

Show that   is a normal matrix and the columns of   are orthonormal 
eigenvectors of  . 
Solution

Normal matrix

   

Definition  [Normal Matrix]

If matrix ∈  satisfies 
    ,

then   is called normal matrix.

   

Equivalent Conditions for a Matrix to be Normal

   

Theorem  8.8.5
For matrix  ∈ , the following are equivalent:

(1)   is unitarily diagonalizable.
(2)   is a normal matrix.
(3)   has  orthonormal eigenvectors. 
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Since  


 




 



   ,     and hence   is a normal matrix.

Letting  























≡  u  u , we get

u 


 




 



















 
















 u , 

u 


 




 





































 u .

Thus u  and u  are eigenvectors of  . In addition, since u   u   

and u⋅ u u
 u  , u  and u  are orthonormal eigenvectors of .   ■

Example 11 Unitarily diagonalize  


 


 

  
.

Solution

Note that matrix   is Hermitian and its eigenvalues are      .

An eigenvector corresponding to    is x 


 





. By normalizing it, we 

get u x

x


 

 





. Similarly, we can get a unit eigenvector 

u 

 

 


 

 i  corresponding to   .

Taking    u  u 

 

 


  

  
, we get   



 


 

 
.       ■

 [Remark] 
Although not every matrix   is diagonalizable, using the Schur’s Theorem, we 
can obtain an upper triangular matrix   (close to a diagonal matrix) similar to 
 . The upper triangular matrix   is called the Jordan canonical form of  . 
The Jordan canonical form will be discussed in Chapter 10.
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8.9  Lecture Movie : http://www.youtube.com/watch?v=c0y5DcNQ8gs   

 Lab : http://matrix.skku.ac.kr/knou-knowls/cla-week-11-sec-8-1.html 

*Linear system of differential equations

     
Many problems in science and engneering can be written as a 
mathematical problem of solving linear system of differential 
equations. In this section, we learn how to solve linear system of 
differential equations by using a matrix diagonalization.

Details can be found in the following websites: 
       http://www.math.psu.edu/tseng/class/Math251/Notes-LinearSystems.pdf 

                 

              
http://matrix.skku.ac.kr/CLAMC/chap8/Page83.htm
http://matrix.skku.ac.kr/CLAMC/chap8/Page84.htm
http://matrix.skku.ac.kr/CLAMC/chap8/Page85.htm
http://matrix.skku.ac.kr/CLAMC/chap8/Page86.htm
http://matrix.skku.ac.kr/CLAMC/chap8/Page87.htm  

 “It is through science that we prove, but through intuition that we 
discover. ”

Jules Henri Poincaré (1854 – 1912) 
http://en.wikipedia.org/wiki/Henri_Poincar%C3%A9 
 He is often described as a polymath, and in mathematics as 
The Last Universalist by Eric Temple Bell,[3] since he excelled in all fields 
of the discipline as it existed during his lifetime.

http://www.youtube.com/watch?v=c0y5DcNQ8gs
http://matrix.skku.ac.kr/knou-knowls/cla-week-11-sec-8-1.html
http://www.math.psu.edu/tseng/class/Math251/Notes-LinearSystems.pdf
http://matrix.skku.ac.kr/CLAMC/chap8/Page83.htm
http://matrix.skku.ac.kr/CLAMC/chap8/Page84.htm
http://matrix.skku.ac.kr/CLAMC/chap8/Page85.htm
http://matrix.skku.ac.kr/CLAMC/chap8/Page86.htm
http://matrix.skku.ac.kr/CLAMC/chap8/Page87.htm
http://en.wikipedia.org/wiki/Henri_Poincar%C3%A9
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Chapter 8    Exercises

Ÿ http://matrix.skku.ac.kr/LA-Lab/index.htm 
Ÿ http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm 

   Problem 1  Suppose a linear transformation   is defined by  






 


 


  

 
 

and   








 


 

  is an ordered basis for ℝ . Find the matrix 

representation   of  relative to the ordered basis .

 

   Problem 2  Let   ℝ→ℝ  be defined by 




 








 

 
 

 and let   v v, 

  v′ v′ v′ be ordered bases for   ,   , respectively, where

v 


 





, v 



 





, v′ 












, v′ 












, v′ 












. Find the matrix 

representation 
  of  with respect to the ordered bases    and  .

   Problem 3  Suppose a linear transformation   ℝ→ℝ  is defined by  




 


 


  

  
 and   









 




 ,   








 




  are ordered bases for 

  . 

(1) Find the matrix representation   of  relative to the ordered basis .

(2) Find the transition matrix   
 from   to .

(3) Compute     .

Solution   (1)   
     

   ⇒ 


 





 



 


 

 
 



 





 



 






   ⇒   


 


  

  
 

http://matrix.skku.ac.kr/LA-Lab/index.htm
http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm
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  (2)   
     

   ⇒  


 





 



 









 





      ,

        


 





 



 









 





      ,

   ⇒   



 


 

 




 


 

 

  (3)    


 


  

  


 


  

  


 


 

 




 


 

  
               ■

   Problem 4  Determine if the given matrix   is diagonalizable. If   is 
diagonalizable, find matrix   diagonalizing   and the associated 
diagonal matrix   such that      .

(1)  


 


  

  
.

(2)   








  

  
  

.

Solution  Sage: 
------------------------------------------------
A=matrix([[2,1,1],[1,2,1],[1,1,2]])
print A.eigenvectors_right()
------------------------------------------------
[(4, [(1, 1, 1)], 1), (1, [(1, 0, -1),(0, 1, -1)], 2)]

------------------------------------------------
x1=vector([1, 1, 1])
x2=vector([1, 0, -1])
x3=vector([0, 1, -1])
P=column_matrix([x1,x2,x3])
print P
print P.det()
------------------------------------------------
[ 1  1  0]
[ 1  0  1]
[ 1 -1 -1]
3                                                                     ■
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A=matrix(QQ,3,3,[1,2,2,2,1,-2,2,-2,1])

A.eigenvalues()

A=matrix(QQ,3,3,[1,2,2,2,1,-2,2,-2,1])

A.eigenvevtors_right()  

C=matrix(3,3,[0,2/sqrt(6),1/sqrt(3),1/sqrt(2),1/sqrt(6),-1/sqrt(3),-1/sqrt(2),1/s

qrt(6),-1/sqrt(3)])

C.transpose()*C  

   Problem 5  Find the algebraic and geometric multiplicity of each eigenvalue of  :

                        








   

  
  

.

   Problem 6  Find matrix   orthogonally diagonalizing matrix   and the diagonal 
matrix   such that     , using Sage.

                          








  

   
   

.

Solution  Sage:

[-3, 3, 3] 

[(-3, [(1, -1, -1)], 1), (3, [(1, 0, 1),(0, 1, -1)], 2)]

[1 0 0]
[0 1 0]
[0 0 1]                  ■

   Problem 7  In each of the following matrix   and set   of linear independent 
eigenvectors of   are given. Find an orthogonal matrix   and a 
diagonal matrix   such that     .

(1)  


 


  

  
,       .

(2)  


 


 

 
,       .
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   Problem 8  Compute x  xx  when 

          








  

    
   

, x 












Solution      x x =    








  

    
   












 =        .   ■

 
   Problem 9  Write the following expression as a quadratic form xx :

          .

Solution      x x  =    








   

  
   












 .   

Sage :  _________________________________________
var('x','y','z')
a=2; b=3; c=1; d=1; e=-2; f=3
A=matrix(3,3,[a,d/2,e/2,d/2,b,f/2,e/2,f/2,c])
X=matrix(3,1,[x,y,z])
print expand(X.transpose() * A * X)

                __________________________________________ 
[2*x^2 + x*y - 2*x*z + 3*y^2 + 3*y*z + z^2]. ■

   Problem 10  Eliminate the cross-product term from the following:

       .

   Problem 11  Sketch the graph of the following equation:

        

Solution   x x  x     where  


 


 

 
     x 



 





. 

     =>       => v

 

 





v
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     =>  

 

 


 

  
.  x   x′  and ′  ′ ′   . 

     =>  ′ 


  ′ 

Sage :  _________________________________________
var('x y')
f=x^2+4*x*y+4*y^2+6*x+2*y-25
implicit_plot(f==0, (x,-10,10), (y,-10,10)) 

                __________________________________________

                                                   ■

   Problem 12  Eliminate the cross-product terms from the quadratic surface 
          by properly rotating the axes.

   Problem 13  Compute the singular values of matrix  :

      . 

   Problem 14  Find the SVD of  :

 


 


  

  
.

Solution     


 


  

  









 

 
 




 


 

 
,   









 

 
 



 


  

  










  

  
  

Sage :  _________________________________________
aat = matrix(QQ,2,2,[2,1,1,2])
ata = matrix(QQ,3,3,[1,1,0,1,2,1,0,1,1])
print aat.right_eigenvectors()
print ata.right_eigenvectors()

                __________________________________________
[(3, [(1, 1)], 1), (1, [(1, -1)], 1)]
[(3, [(1, 2, 1)], 1), (1, [(1, 0, -1)], 1), (0, [(1, -1, 1)], 1)]
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,  






















 
,  
























 

 






 




, 

   =>    






















 


 


  

  
























 

 






 




.           ■

   Problem 15  In the below the SVD of   is given. Find  † .

.

   Problem 16  The following matrix   has full column rank. Find its pseudo-inverse.

                            













. 

Solution  Sage :  _________________________________________
A=matrix(QQ,[[1,1],[0,2],[3,7]])
print A.rank()
B=A.transpose() * A
Pseudo=B^-1*A.transpose()
print Pseudo

                __________________________________________
2
[   4/7 -11/14    1/7]
[ -3/14   5/14   1/14]

         ∴  †     





 




 



 














. ■

   Problem 17  For given vectors u      v      , compute Euclidean 
inner products u⋅ v and v⋅ u . 
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   Problem 18  Let u










 




 
 

, v










 
 
 


  

 be vectors in    with Euclidean inner 

product defined. Compute the norms u  and v , and u v.

   Problem 19  Find the eigenvalues of  


 


 

  
 and a basis for the eigenspace 

associated with each eigenvalue. 

   Problem 20  Find any invertible matrix   diagonalizing a given matrix   which 
has complex eigenvalues?

                          


 


  

  
. 

Solution   Sage :  _________________________________________
A=matrix(QQ,[[6,-4],[8,-2]])
print A.eigenvalues()
print A.eigenvectors_right()

                __________________________________________
[2 - 4*I, 2 + 4*I][(2 - 4*I, [(1, 1 + 1*I)], 1), (2 + 4*I, [(1, 1 - 1*I)], 1)]. 

                        ∴  


 


 

   
     ■

   Problem 21  Find the conjugate transpose    of the following matrix  :

 











   
 
  
   

.

   Problem 22  Determine which matrices in the below are Hermitian.

(a) 

 


  

  
          (b) 
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(c) 















 








         (d) 












 















(e) 











 




  


 


     (f) 
















 


 


   Problem 23  Determine if each matrix in the below is unitary.

(a)  























       (b)  









  

   
     

   Problem 24  Replace each × by a complex number to make matrix   Hermitian.

 








   

×   
× × 

 

   Problem 25  Show that the following matrix   is unitary, and find its inverse    .

 














   




  




   


  

   Problem P1  Let v    and v    and suppose    →    is a linear 
transformation. If v   v  and v   v , what is the standard matrix of 
? In addition, if   v v, what is the matrix representation    of 
relative to the ordered basis ?

   Problem P2  Suppose the following polynomial  is the characteristic polynomial 
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of a square matrix  .

       .

(1) What is the order of ?

(2) If the number of linear independent eigenvectors of   cannot exceed 3, is 
the matrix   diagonalizable? 

(3) What is the dimension of each eigenspace of ?

(4) Suppose   is diagonalizable. Discuss about a relationship between the 
algebraic multiplicity of each eigenvalue  and the dimension of the solution 
space to the homogeneous linear system  x .

   Problem P3  (1) Suppose the following are the eigenvalues of a × symmetric matrix 
  and their corresponding eigenvectors:

                            v      v     v    .
               Find the matrix  . 

            (2) Determine if there exists a × matrix whose eigenvalues and their 
corresponding eigenvectors are given in the below: 

            v      v     v    

   Problem P4  Show  


 


 

 
 has non-real eigenvalues. 

  

   Problem P5  Show that if ∈ ( ) is skew-Hermitian, then every eigenvalue of   is a 
pure imaginary number. 

   Problem P6  Use properties (1) and (3) of inner product in Section 8.7 to 
show that  u v  u v . 
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Vector Space

9
9.1 Axioms of a Vector Space
9.2 Inner product; *Fourier series
9.3 Isomorphism
9.4 Exercises

The operations used in vector addition and scalar 
multiple are not limited to the theory but can be 
applied to all areas in society. For example, 
consider objects around you as vectors and make a 
set of vectors, then create two proper operations 
(vector addition and scalar multiple) from the 
relations between
the objects. If these two operations satisfy the two basic laws and 8 operation 
properties, the set becomes a mathematical vector space (or linear space). Thus 
we can use all properties of a vector space and can analyze the set theoretically 
and apply them to real problems.  

In this chapter, we give a definition of a vector space and a general theory of a 
vector space.

Chapter
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Definition  [Vector space]

If a set  ≠  has two well-defined binary operations, vector 
addition (A) ‘ ’ and scalar multiplication (SM) ‘⋅ ’, and for any 
x y z ∈  and   ∈ℝ , two basic laws

  A. x  y∈ ⇒ x  y∈ .
  SM. x ∈  ∈ℝ ⇒ x ∈ .

and the following eight laws hold, then we say that the set   forms a 
vector space over ℝ  with the given two operations, and we denote it 
by   ⋅  (simply   if there is no confusion). Elements of   are 
called vectors.

  A1. x  y  y  x.
  A2. x  y   z  x  y  z .
  A3. For any x ∈ , there exists a unique element  in  such that
      x    x.
  A4. For each element x  of  , there exists a unique  x  such that
      x   x    .

  SM1. x  y   x  y.
  SM2.    x  x  x.
  SM3.   x   x   x.
  SM4. x  x.

9.1  Ref site : http://youtu.be/m9ru-F7EvNg, http://youtu.be/beXWYXYtAaI

 Lab site: http://matrix.skku.ac.kr/knou-knowls/cla-week-14-sec-9-1.html 

Axioms of a Vector Space

The concept of vectors has been extended to -tuples in ℝ  from 
the arrows in the 2-dimensional or 3-dimensional space. In Chapter 
1, we defined the addition and the scalar multiple in the 

-dimensional space ℝ . In this section, we extend the concept of 
the -dimensional space ℝ  to an -dimensional vector space. 

Vector Spaces
   

http://youtu.be/m9ru-F7EvNg
http://youtu.be/beXWYXYtAaI
http://matrix.skku.ac.kr/knou-knowls/cla-week-14-sec-9-1.html


- 368 -

Example 1 For vectors x     y      in ℝ  and a scalar  ∈ℝ , the 
vector sum x  y and a scalar multiple x  by  ∈ℝ  are defined as

(1) x  y          .
(2) x      .
The set ℝ  ⋅  together with the above operations forms a vector 
space over the set ℝ  of real numbers.
                                                               ■

Example 2 For vectors in ℝ

                      x 













⋮


,     y 












⋮


and a scalar  ∈ℝ , the sum of two vectors x  y and the scalar 
multiple of x  by   is defined by 

            (1) x  y










 
 ⋮
 

  and  (2) x 













⋮


.

The set ℝ  form a vector space together with the above two operations.  
■

  

The vector   satisfying A3 is called a zero vector, and the vector  x
satisfying A4 is called a negative vector of x.

   

 In general, the two operations defining a vector space are important. Therefore, 
it is better to write   ⋅  instead of just  .
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Example 3 Let  ×   be the set of all ×  matrices with real entries. That is,
 ×       ×   ∈ℝ  ≤  ≤   ≤  ≤ .

When  , we denote  ×   by  .

If  ×   is equipped with the matrix addition and the scalar 
multiplication, then  ×   form a vector space  ×   ⋅  over ℝ .
Then the zero vector is the zero matrix   and for each  

 ∈ ×  , the negative vector is      . Note that each vector 
means an ×  matrix with real entries.                             ■

   

Theorem  9.1.1
Let  be a vector space. Let x∈  and  ∈ℝ . Then the following hold. 
(1) x   .
(2)   .
(3)  x x.
(4) x   ⇔    or x   .

Zeo Vector Space

   

Definition

Let   . For a scalar  ∈ℝ , if the addition and scalar multiple 
are defined as 

        , then

  forms a vector space. This vector space is called a zero vector 
space.
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Example 4 Let ℰ ℝ  be the set of all continuous functions from ℝ  to ℝ . That is,
ℰ ℝ   ∣  ℝ→ ℝ  is continuous}

Let    ∈ ℰ ℝ  and a scalar  ∈ℝ , define the addition and the scalar 
multiple as

          ,    .

Then ℰ ℝ  forms a vector space ℰ ℝ   ⋅  over ℝ . 

Now the zero vector is     and for each  ∈ ℰ ℝ ,    is defined 
as        . 

Vectors in ℰ ℝ  mean continuous functions from ℝ  to ℝ .          ■

Example 5 Let   be the set of all polynomials of degree at most  with real 
coefficients. In other words,

     
 ⋯ 

    …  ∈ℝ

Let    ⋯ 
     ⋯ 

∈  and a scalar 
 ∈ℝ . The addition and the scalar multiplication are defined as 
                   ⋯     



      ⋯   
 .

Then   forms a vector space    ⋅  over ℝ . Now the zero vector 
is     ⋯     and each   ∈  has the negative vector 
    defined as 

      ⋯  
 .

Vectors in   means polynomials of degree at most   with real 
coefficients.                                                           ■
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Example 6 If    ⋅  is a vector space,   and   itself are subspaces of  .    
  ■

Subspace

   

Definition

Let   be a vector space and  ≠  be a subset of  . If  forms a 
vector space with the operations defined in  , then   is called a 
subspace of  .

   

 In fact, the only subspaces of    are ,   , and lines passing through the 

origin. (see section 3.4 Example 3 ).

 In ℝ , only subspaces are (i) Null Spaces, (ii) ℝ , (iii) lines passing through 
origin and (iv) planes passing through origins.

 How to determine a subspace? (the 2-step subspace test)

   

Theorem  9.1.2 [the 2-step subspace test]
Let a set   ⋅  be a vector space and  ≠ ∅  be a subset of  . 
A necessary and sufficient condition for   to be a subspace of   is  
(1) x  y∈ ⇒ x  y∈ (closed under vector addition  )
(2) x ∈  ∈ℝ ⇒ x ∈ (closed under scalar multiple⋅ )
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Example 7 Show that  


  

       ∈ℝ  is a subspace of the vector space 

 ×    ⋅ .

Solution

Note that  ×   is a vector space under the matrix addition and the 
scalar multiplication. Let 

x 



 


  

  
 y 




 


  

  
∈  ∈ℝ .

The following two conditions are satisfied.

 (1) x  y 



 


      

     
∈

 (2) x 



 


  

  
∈.

Hence by Theorem 9.1.2,   ⋅  is a subspace of  ×    ⋅ . ■

Example 8 The set of invertible matrices of order  is not a subspace of the vector 
space  . 

Solution

One can make a non-invertible matrix by adding two invertible matrices. 
For example, 



 


 

 



 


  

  




 


 

 
.                                       ■

Example 9 Let   be a vector space and   x x … x ⊆  . Show that the set
  x  x  ⋯  x    …   ∈ℝ

is a subspace of  . Note that    , linear span of the set  .

Solution

Suppose that x y∈ , ∈ℝ . Then for  ∈ℝ     …  , 
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x  x  x  ⋯  x  y  x  x  ⋯  x .

Thus

        x  y     x     x  ⋯     x ,
x   x   x  ⋯   x .

∴  x  y ∈ x ∈

Therefore   is a subspace of  .                                    ■

Liinear independence and linear dependence

   

Definition  [Linear independence and linear dependence]

If a subset v v …  v of a vector space   satisfies the following 
condition, it is called linearly independent. 

v  v ⋯ v    ⇒    ⋯   

and if the set is not linearly independent, it is called linearly 
dependent. Hence being linearly independent means that there exist 
some scalars   …    not all zero such that 
v  v ⋯ v  .
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Example 10 Let  


 


 

 
,  



 


 

 
,  



 


 

 
,  



 


 

 
. Since 

       


 


 

 
 ⇒          

    is a linearly independent set of  .                 ■

Example 11 Let  


 


  

 
,  



 


 

  
,  



 


  

 
. Since    ,    is 

a linearly dependent set of  .                                 ■

Example 12
The subset    …  of   is linearly independent.             ■

Example 13 Let        be a subset of  . Then since 
         ,

the set is linearly dependent.                                         ■

Remark  Linear combination in 2-dimensional space - linear dependence   
 (computer simulation)

Ÿ http://www.geogebratube.org/student/m57551

 

http://www.geogebratube.org/student/m57551
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Example 14
The set in Example 10  consisting of  



 


 

 
,  



 


 

 
,  



 


 

 
, 

 


 


 

 
 is a basis of  . Thus dim  ×    . On the other hand, 

the set in Example 12     …  is a basis of  . Thus 
dim     . These bases play a role similar to the standard basis of 
  , hence   and   are called standard bases.                    ■

Example 15 Show that         is a basis of  .

Solution

         ⇔        

                             ⇔             

Since       ,   is linearly independent.

Next, given  ∈ , the existence of    such that

             

 is guaranteed since the coefficient matrix of the linear system

Basis
 

   

Definition  [basis and dimension]

If a subset (≠ ) of a vector space   satisfies the following 
conditions,   is a basis of  .

(1) span   .
(2)   is linearly independent.

In this case, the number of elements of the basis ,  , is called the 
dimension of  , denoted by dim.  
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   that is, 









   

  
  


























is invertible. Thus   spans  . Hence   is a basis of  .           ■

Example 16 Show by Theorem 9.1.3 that    ,     ,      are linearly 
independent. 

Solution

For some (in fact, any) ,    
  

  

  
  ≠ . Thus these 

functions are linearly independent.                                □

Sage  http://sage.skku.edu or http://mathlab.knou.ac.kr:8080/
                                                                           
var('x')
W=wronskian(1, e^x, e^(2*x))   # wronskian(f1(x), f2(x), f3(x))
print W

Linear independence of continuous function: Wronskian

   

Theorem  9.1.3 [Wronski's Test]
If     …   are    times differentiable on the interval 
∞  ∞  and there exists ∈ ∞  ∞  such that Wronskian   
defined below is not zero, then these functions are linearly independent.

    
   ⋯   

′  ⋯ ′ ⋮ ⋮ ⋮

    ⋯ 

     

≠ 

Conversely if    for every   in ∞ ∞ , then  …   are 
linearly dependent.

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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2*e^(3*x)                                                             ■

Example 17 Let    ,    sin. Show that these functions are linearly 
independent.

Solution

Since      sin

 cos
 cos  sin ≠   for some  , these 

functions are linearly independent.                                    ■

Example 18 Show that    ,      are linearly dependent.

Solution

Since for any ,     
 

 , these functions are linearly 

dependent.                                                             ■

http://matrix.skku.ac.kr/kiosk/ 

http://matrix.skku.ac.kr/kiosk
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Example 1 The Euclidean inner product, that is, the dot product is an example of 
an inner product on ℝ . Let us ask how other inner products on  are 
possible. For this, consider ∈ ℝ . Let u  and v be the column 
vectors of   . Define  u v  by  u v  vu . Then let us find the 
condition on   so that this function becomes an inner product.

Solution

In order for  u v vu  to be an inner product, the four conditions 
(1)~(4) should be satisfied. First consider conditions (2) and (3).  

9.2  ref movie: http://youtu.be/m9ru-F7EvNg,   http://youtu.be/nIkYF-uvFdA 

 demo site: http://matrix.skku.ac.kr/knou-knowls/cla-week-14-sec-9-2.html 

Inner product; *Fourier series

In this section, we generalize the Euclidean inner product on ℝ  
(dot product) to introduce the concepts of length, distance, and 
orthogonality in a general vector space.

Inner product and inner product space

   

Definition  [Inner product and inner product space]

The inner product on a real vector space   is a function assigning a 
pair of vectors u , v to a scalar  u v  satisfying the following 
conditions. (that is, the function     × → ℝ  satisfies the 
following conditions.)

(1)  u v v u  for every u v in  . f
(2)  u v w u w v w  for every u v w in  .
(3)  u v   u v  for every u v in   and  in ℝ .
(4)  u u≥    u u   ⇔ u   for every u  in  .

The inner product space is a vector space   with an inner product 
 u v  defined on  . 

   

http://youtu.be/m9ru-F7EvNg
http://youtu.be/nIkYF-uvFdA
http://matrix.skku.ac.kr/knou-knowls/cla-week-14-sec-9-2.html
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       u v w  wu v
                   wu wv   u w   v w ,

       u v  vu  vu    u v .

Let us check when condition (1) holds. Since vu  is a ×  matrix 
(hence a real number), we have

vu  vu

That is, to satisfy  u v vu  vu  u v  uv  v u
we have     , in other words,   is a symmetric matrix.

Thus the function  u v  vu  satisfy condition (1) if   is a 
symmetric matrix.

Finally check condition (4). An × symmetric matrix   should satisfy 
uu   for any nonzero vector u . This condition means that   is 
positive definite. In other words, if   is positive definite, 
 u v  vu  satisfies condition (4).

Therefore, to wrap up, if   is an × symmetric and positive definite 
matrix, then  u v  vu  defines an inner product on ℝ . The well 
known Euclidean inner product u⋅ v  vu  v u  can be obtained as a 
special case when     (symmetric and positive definite).             ■

Example 2 Let  


 


 

 
 be a ×  symmetric matrix and u 


 





 v 




 





 in ℝ . 

Then 
       u v  vu        

satisfies conditions (1), (2), (3) of an inner product on ℝ . Now let us 

show that   is a positive definite. Let w 


 





. Then

 For any nonzero vector u , if the eigenvalues of   are positive, then uu   
(the converse also holds.)
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  w w  ww          . Thus ww≥   and 

      ww    ⇔        ⇔      .

Hence the symmetric matrix   is positive definite and defines an inner 
product on    of the form  u v  vu . 

If u 

 





 and v 


 





, then u⋅ v  . On the other hand, 

       u v   


 


 

 


 





 

Hence the inner product  u v  vu  on ℝ  is different from the 
Euclidean inner product.                                             ■

Norm and angle

   

Definition  [norm and angle]

Let   be a vector space with an inner product  u v . The norm (or 
length) of a vector u  with respect to the inner product is defined by
u    u u .

The angle   between two nonzero vectors u  and v is defined by

cos u  v 
 u v   ( ≤  ≤ ).

In particular, if two vectors u  and v satisfy  u v , then they are 
said to be orthogonal.

 For example, the norm of u 

 





 with respect to the inner product given in 

Example 2  is 

u    u u  uu    


 


 

 


 





 .
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Thus u    . On the other hand, the norm u 


 





 with respect to the 

Euclidean inner product is 
u   u⋅ u  uu  

 

 For any inner prodcut space, the triangle inequality u  v  ≤ u   v  holds.

 Using the Gram-Schmidt orthogonality process, we can make a basis 
v v … v of a inner product space   into an orthonormal basis 
u u … u. 

 
Inner product on complex vector space

   

Definition

Let   be a complex vector space. Let u v w be any vectors in   and 
 ∈  be any scalar. The function    from  ×  to   is called an 
inner product (or Hermitian inner product) if the following hold.
(1)  u vv u .
(2)  u v w u w v w .
(3)  u v  u v .
(4)  v v≥    v v  ⇔ v  

   
 A complex vector space with an inner product is called a complex inner product 
space or a unitary space.  If  u v   for any two nonzero vectors u v, then 
we say that u  and v are orthogonal.
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Example 3 Let u   …   and v    …   be vectors in   . The 
Euclidean inner product u⋅ v  

 ⋯  satisfies the 
conditions  (1)~(4) for the inner product.                           ■

Example 4 Let ℰ     be the set of continuous functions from the interval 
  to the complex set  . Let   ∈ ℰ    . If the addition 
and scalar multiple of these functions are defined below, then 
ℰ    is a complex vector space with respect to these operations.

                    ∈ .

In this case, a vector in ℰ     is of the form       

and     are continuous functions from   to ℝ . For  
∈ ℰ    , define the following inner product

         



 .

Then ℰ     is a complex inner product space.

We leave readers to check conditions (1)~(3) for an inner product, and 
show condition (4) here. Note

         



  





  

and     ≥  , hence    ≥ . In particular,

 Let   be a complex vector space. By the definition of an inner product on  , 
we obtain the following properties.

  (1)   v     v  .
  (2)  u vw   u v   u w .
  (3)  u v    u v  ∈   (∵  u v  vu  vu  u v ).
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       ⇒       

That is,     ≤  ≤ , conversely, if   is a zero function, then it is 
easy to see that     .                                 ■

Example 5 Find the Euclidean inner product and the distance of vectors  
u     v     .

Solution

u⋅ v    ⋅      

              

                 .

u v   u v 
                

           

       .                                          ■

Example 6 From Example 4 , we let       and      . Find the norm of 
  .

Solution

Complex inner product space, norm, distance

   

Definition  [Norm, and distance]

Let   be a complex inner product space. The norm of u  and the 
distance between u  and v  are defined as follows:

u   u u 



, u v  u v .
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  .        ■

Cauchy-Schwarz inequality and the triangle inequality

   

Theorem  9.2.1
Let   be a complex inner product space. For any u v in  , the 
following hold. 

(1)   u v  ≤ u  v  . (Cauchy-Schwarz inequality)
(2) u v  ≤  u   v  . (triangle inequality)

Proof  We prove (1) only and leave the proof of (2) as an exercise.
If u  ,  u v   ∥u∥∥v∥ . Hence (1) holds. Let u≠  and  

p proj  uv, w v p. Then  w p  and p∥u∥

 v u u . Thus we have 

the following. 

                            
                 v
                            w v p
       
           p u  proj uv         u             
             
           ≤  w w w v p w v w p
                         w v v p v v v p v
                         ∥v∥    u v ∥v∥ ∥u∥

 v u
 u v .

       Thus, as∥v∥∥u∥ ≥ u v u v  u v , (1) holds.   ■ 
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Example 7 Let u       v     be vectors in   . Answer the 
following.

(1) Compute the Euclidean inner product  u v u  v  u v .
(2) Show that u  and v are linearly independent.

Solution

(1)  u v               

       u           

       v             

       u v               

                     

(2) If u v   for any scalar   ∈, then
                   
       ⇒             .

   So      . Thus u  and v are linearly independent.        ■

Example 8 Let u       v     be vectors in   . Check that the 
Cauchy-Schwarz inequality and the triangle inequality hold.

Solution

Since   u v     and u  v     , the Cauchy-Schwarz 
inequality holds. 
Also since  u v   ≤     u   v , the triangle inequality 
holds.                                                           ■

Example 9 [Cauchy-Schwarz inequality in    and ℰ     ]

(1) Let    be a complex inner product space with the Euclidean inner 
product. Let u  …   , v   …    be in   . Then
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  u v   
  




  ≤ 

  



 
 





  



 
 




 u  v

   Hence the Cauchy-Schwarz inequality holds.                    ■

(2) Let u   v  ∈ ℰ     . As in Example 4 , since the inner 
product is given by

  u v   



   ≤ 





  









   




 

                    u  v 
   the Cauchy-Schwarz inequality holds.                            ■

Example 10
[triangle inequality] Consider the inner products given in Example 3  and 

Example 4 .

(1) Let u   …   v   …  ∈  . Then the triangle inequality 
holds. That is,

u v   
  



   
 




≤ 
  



 
 




 
  



 
 




 

                           u   v .                                  ■

(2) Let u   v  ∈ ℰ     . Then the triangle inequality 
holds. That is, 

   u v   




      




 

          ≤ 




  




 




   




           u   v .                                                  ■
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Example 1 If    →  satisfies that v   for any v∈ , then it is a linear 
transformation, called the zero transformation. Also, if    →   
satisfies that v  v for any v ∈ , then it is a linear transformation, 
called the identity operator.                                        ■

9.3  Reference site: http://youtu.be/frOcceYb2fc,   http://youtu.be/Y2lhCID0XS8   
 Lab site: http://matrix.skku.ac.kr/knou-knowls/cla-week-14-sec-9-3.html 

Isomorphism

We generalize the definition of a linear transformation on ℝ  to a 
general vector space  . A special attention will be given to both 
injective and surjective linear transformations. 

    

Definition

Let   and  be vector spaces over ℝ .    →   be a map from a 
vector space   to a vector space . If  satisfies the following 
conditions, it is called a linear transformation.  

(1) u  u for every u  in   and  in ℝ .
(2) u v  uv for every u v in  .

   

 If    , then the linear transformation   is called a linear operator. 

   

Theorem  9.3.1
If    →   is a linear transformation, Then we have the following:

(1)   . 
(2)  u  u. 
(3) u v  u v. 

http://youtu.be/frOcceYb2fc
http://youtu.be/Y2lhCID0XS8
http://matrix.skku.ac.kr/knou-knowls/cla-week-14-sec-9-3.html
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Example 2 Define    →   by v  v ( a scalar). Then  is a linear 
transformation. The following two properties hold.
 
(1) u  u  u  u
(2) u v  u v  uv uv

If      , then   is called a contraction and if   , then it is 
called a dilation.                                                     ■

Example 3 Let ℰℝ  be the vector space of all continuous functions from ℝ  to ℝ  
and   be the subspace of ℰℝ  consisting of differentiable functions. 
Define    →   by     ′. Then   is a linear transformation and 
called a derivative operator.                                          ■

Example 4 Let   the subspace of ℰℝ  consisting of differentiable functions. 

Define    →   by    




 . Then  is linear 

transformation.                                                       ■

Example 5 If    →  is the zero transformation, ker    and Im  .  ■

Kernel and Range

   

Definition  [Kernel and Range]

Let    →  . Define

       ker  v∈ v   , Im  v∈ v∈

ker is called the kernel and Im the range.  
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Example 6 If    →   is the identity operator, ker   and Im   .      ■

Example 7 Let   be the derivative operator defined by    ′  as in Example 3 . 
ker  is “the set of all constant functions defined on ∞  ∞ ” and Im

is “the set of all continuous functions, that is, ∞  ∞ ”.            
                                                                        ■

Basic properties of kernel and range

   

Theorem  9.3.2
If    →   is a linear transformation, ker  and Im  are subspaces 
of   and  , respectively.

   

Theorem  9.3.3
If    →   is a linear transformation, the following statements are 
equivalent.

(1)   is an injective (or one-to-one) function.
(2) ker  . 

Isomorphism

   

Definition

If a linear transformation    →   is one-to-one and onto, then it 
is called an isomorphism. In this case, we say that   is isomorphic to 
, denoted by  ≅  . 
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Example 8 We immediately obtain the following result from the above theorem.
   ≅ ℝ ,   ×  ≅ ℝ ×                                      ■

   

Theorem  9.3.4
Any -dimensional real vector space is isomorphic to ℝ . 

 Any -dimensional real vector space (defined over the real set ℝ) is isomorphic 
to ℝ and any -dimensional complex vector space (defined over the complex 
set ) is isomorphic to  . 

[the 12th International Congress on Mathematical Education] 
http://www.icme12.org/ 

http://matrix.skku.ac.kr/2012-Album/ICME-HPM.html 

http://www.icme12.org
http://matrix.skku.ac.kr/2012-Album/ICME-HPM.html
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Chapter 9    Exercises

Ÿ http://matrix.skku.ac.kr/LA-Lab/index.htm 
Ÿ http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm 

   Problem 1  When we define the addition and the scalar multiple on ℝ  and   as 
follows. Check if ℝ  and   are vector spaces.

(1)                       .

(2)                       .

(3) 

 


 

 




 


 

 





 


    

    
,  


 


 

 





 


 

 
.  

(4) 

 


 

 




 


 

 





 


     

     
,  


 


 

 





 


 

 
. 

   Problem 2  Which one is a subspace of ?

(1) 


  

  ∈ℝ.

(2) 


  

   ∈ℝ. 

(3) 


 

     .

(4) 


 

     .

   Problem 3  Let       be a vector in  . Write  as a linear 
combination of       ,       ,      .

Solution   Let    =      
     

  

  =     
             ,   ∈ℝ .

http://matrix.skku.ac.kr/LA-Lab/index.htm
http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm
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=> 










      

     
       

  =>            

    Therefore        .                ■

   Problem 4  Determine if the below vectors in a given vector space are linearly 
independent or linearly dependent. 

(1) ℝ  x       x         x       
        x      .

(2)   x 


 


 

 
 x 



 


  

  
 x 



 


  

 
.

(3)                    
               .

   Problem 5  Let    be the complex inner product space with the Euclidean inner 
product. Let u     v    . Answer the following. 

(1) Compute  u v .

    (2) Compute u   v  u  v .

               (3) Confirm the Cauchy-Schwarz inequality. 

               (4) Confirm the triangle inequality.

Solution   (1) 〈uv〉vu      









    ×   

(2) ∥u∥         

   ∥v∥          

∥u  v∥ ∥  ∥       

(3)  〈uv〉,∥u∥∥v∥ implies 〈uv〉 ≤ ∥ u∥∥v∥.
        (4) ∥u∥∥v∥∥uv∥  =>  ≤ 

             Triangle inequality ∥uv∥≤ ∥u∥∥v∥holds.             ■
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   Problem 6  Define an inner product on ℝ  as  u v       . 
Compute the following. (here u     , v    )

(1) The ×  symmetric matrix   such that  u v vu

(2) The norm u  of u   .

(3) The norm v  of v   .

(4)   such that u  v
 u v

 cos .

Solution   (1) Let  


 


 

 
 and 〈uv〉       .

     => 〈uv〉 vu   


 


 

 




 





        .

             ∴            ,  


 


  

  

(2) and (3) ∥u∥ 〈uu〉 

   



 


  

  


 




 
 

        ∥v∥ 〈vv〉 

  



 


  

  


 





 

(4)  cos ∥u∥∥v∥
〈uv〉

 ×

  


 


  

  


 




 




     =>     cos 


 ≈                  ■

   Problem 7  Tell which one is a linear transformation or not. If not, give a reason.

(1)   →  ,   . 

(2)   → ,    .

(3)   ℰ  → ℝ ,    




  . 

(4)   → ℝ ,  tr. 
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(5)   →  ,    . 

(6)    → ℝ , x  x.

   Problem 8  Find the kernel and the range of the following linear transformations.

(1)    →  ,          .

(2)   ℰ    → ,    




  .

 P1  If    are subspaces of a vector space  , prove that ∩   is a 
subspace of  . 

 P2  Let a be a fixed vector and   be the set of all vectors orthogonal to a , 
that is,   x ∈  a⋅ x . Show that  is a subspace of ℝ . 

 P3  Let    be the vector space with the Euclidean inner product. 
Transform u     u     u     into an orthonormal 
basis by using the Gram-Schmidt process.

 P4  Find the standard matrix corresponding to the given linear 
transformation   →   defined by 

   
 





 


   

   
.

 P5  Define    ℝ →  ℝ  by      . Show that it is a linear 
transformation and find the kernel and the range of .
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Jordan Canonical Form

10
 10.1 Finding the Jordan Canonical Form with a Dot Diagram
*10.2 Jordan Canonical Form and Generalized Eigenvectors
 10.3 Jordan Canonical Form and CAS
 10.4 Exercises

If a matrix is diagonalizable, every thing is much easier. But most of matrices are not 
diagonalizable. The Jordan canonical form is an upper triangular matrix of a particular form 

called a Jordan matrix (a simple block diagonal matrix) 
representing an operator with respect to some basis. The 
diagonal entries of the normal form are the eigenvalues of the 
operator, with the number of times each one occurs given by 
its algebraic multiplicity.
Any square matrix has a Jordan normal form if the field of 
coefficients is extended to one containing all the eigenvalues of 
the matrix. Since each matrix has a corresponding Jordan 
canonical form which is similar to it, all computations can be 
done with this simple upper triangular matrix. The Jordan 
normal form is named after Camille Jordan, a French 
mathematician renowned for his work in various branches of 

mathematics. In this chapter, we will study how to find a Jordan matrix which is similar to 
any given matrix and how to find generalized eigenvectors. 

Chapter
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10.1  Reference video: http://youtu.be/NBLZPcWRHYI,  http://youtu.be/NBLZPcWRHYI  

 Practice site: http://matrix.skku.ac.kr/knou-knowls/cla-week-15-sec-10-1.html

                 http://matrix.skku.ac.kr/JCF/ 

Finding the Jordan Canonical Form with a Dot Diagram 

If a given matrix is diagonalizable, most computational problems 
involving that matrix and desired conclusions can be easily 
obtained. However, not every matrix is diagonalizable. In this 
section, we will introduce a method for finding the Jordan 
Canonical Form of a non-diagonzaliable matrix by a similarity 
transformation.

Let us review a few concepts of matrix diagonalization.  

Diagonalization of a Square Matrix (Review)

1. Let   be an × matrix. Then, A is diagonalizable if and only if it has  
linearly independent eigenvectors. However not all matrices are diagonalizable.  

2. A normal matrix       is unitarily diagonalizable (that is, unitarily 
similar to a diagonal matrix). However, not all diagonalizable matrices are 
normal.

3. If a matrix   is diagonalizable, each eigenvalue of   generates an 
eigenspace with dimension equal to the algebraic multiplicity of that 
eigenvalue.

 For every square matrix   (not necessarily diagonalizable), one can obtain a 
block-diagonal matrix called the Jordan canonical form matrix that is similar to 
 .

For example, the matrices 

 


 

 
 and 









   

   
   

 are non diagonalizable.

http://youtu.be/NBLZPcWRHYI
http://youtu.be/NBLZPcWRHYI
http://matrix.skku.ac.kr/knou-knowls/cla-week-15-sec-10-1.html
http://matrix.skku.ac.kr/JCF
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Theorem  10.1.1
Let   be an × matrix with   ( ≤  ≤  ) linearly independent 
eigenvectors.  Then,   is similar to a matrix 

       















⋱


  × 

 

where      for some unitary matrix  . Furthermore, we have

       















⋱⋱⋱



 × 

,  (  ⋯   ,  ≤  ≤ ) 

where each  , called a Jordan block, corresponds to an eigenvalue  of 
 . The block diagonal matrix   is called the Jordan canonical form of   
and each  are called Jordan blocks of  . 

 The Jordan Canonical Form (JCF) of a matrix  is a block diagonal matrix 
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Example 1 The matrix 

             

has characteristic polynomial det         and is the 
Jordan Form of some  ×   square matrix  . 

Notice how the algebraic multiplicities of each eigenvalue determines the 
number of times that eigenvalue appears along the principal diagonal of 
  : 2 appears four times, while 3 and 0 appear two times. Hence the 
algebraic multiplicity of 2 is 4.

composed of Jordan blocks, each with eigenvalues of A on its respective 
diagonal, 1's on its superdiagonal, and 0's elsewhere. 

 Remark Properties of Jordan blocks

 1. For a given eigenvalue  of an × matrix  , its geometric multiplicity is  
the number of linearly independent eigenvectors associated with : hence, 
it is the number of Jordan blocks corresponding to .

 2. The sum of the sizes (i.e. orders) of all Jordan blocks corresponding to an 
eigenvalue  is its algebraic multiplicity.

 3. If the geometric multiplicity and algebraic multiplicity of every eigenvalue of  
   are equal, then the size of every Jordan block is ×, and

sum of algebraic multiplicities  sum of geometric multiplicities  size of 

   In this case, the matrix   is diagonalizable. (This type of matrix is called a 
simple matrix.)
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You can easily verify that the sum of the sizes of all Jordan blocks 
corresponding to a single eigenvalue is also equal to its algebraic 
multiplicity.

Also, note that the geometric multiplicities of each eigenvalue determine 
the number of Jordan blocks corresponding to that eigenvalue.
Thus geometric multiplicities of 2, 3 and 0 are 2, 1, and 1 respectively.■

Example 2 For a  ×   square matrix  , if A has only one eigenvalue  with one 
associated linearly independent eigenvector, the Jordan form of   is the 
following: 

 









































This is due to the fact that the number of linearly independent 
eigenvectors of  determines the number of Jordan blocks in the Jordan 
form of  . Thus in this case the geometric multiplicity of the eigenvalue 
5 is 1 where as algebraic multiplicity is 5.                             ■

How to find the Jordan Canonical Form

 Suppose for some matrix ∈  with  distinct eigenvalues  … , the 
Jordan canonical form of  ,  , is the following:

 











  ⋯ 

  ⋮
⋮ ⋱ 
 ⋯  

.

 Here, each   corresponds to a Jordan block with the eigenvector  along its 
diagonal. These are called  block submatrices of  . Now, for each eigenvalue  
, we have a block submatrix
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 ⋯ 

  
⋮

⋮ ⋱ 

 ⋯    

  and, knowing its structure, we can easily find the Jordan Canonical Form  . 
The Jordan form is uniquely determined up to the order of the blocks; that is, 
the number and size of the Jordan blocks associated with each eigenvalue is 
uniquely determined, but the blocks can appear in any order along the main 
diagonal.

 For each eigenvalue       … ,    consists of  ≤  ≤  Jordan blocks; 
let us find the size of each   

∈
, namely  ( ≤ ≤ ). For the set of linearly 

independent eigenvectors x x … x
 corresponding to , for ease of notation, 

let us first consider only one eigenvalue. Therefore,  we let  be   and   be .

  The number of Jordan blocks in  , , and their corresponding sizes 
  …   is determined by calculating the rank of   . Without loss of 
generality, we take  ≥  ≥ ⋯≥ . Now, for the eigenvalue  and the 
dimension of its corresponding -eigenspace (its geometric multiplicity), using   
and  , we introduce a sequence of points to easily calculate  ; this is called 
the dot diagram. The dots in the dot diagram are configured according to the 
following rules:

     * Dot Diagram Properties

  
1. The dot diagram consists of  columns.
 
2. Counting from left to right, the th column consists of the  dots that 

correspond to the eigenvectors of , starting with the initial vector at the 
top and continuing down to the end vector. 

 Thus, the following is the dot diagram  of  :

         •    


 
x  •    


 

x  ⋯ •    


 
x 

•    


 
x  •    


 

x  ⋯ ⋮
      ⋮                    ⋮                 • x



- 401 -

Example 3 For a ×  matrix  , the number of Jordan blocks contained in   is  
and the size of the Jordan blocks is completely determined by 
  … . To see this,  take     and             .  
Then, following the sequence of block sizes, 

is uniquely determined. 
To find the dot diagram of  , since              and 
  ,  the dot diagram of is:

                              ∙∙∙∙   (Number of Jordan blocks: 4)
                      ∙∙∙
                      ∙∙                                      ■

 •     x  • x

 • x

 Here, ｘ ｘ … ｘ   are the linearly independent eigenvectors associated to the 
eigenvalue . Let  denote t the number of dots in the th row of the dot 
diagram; then,   is the number of Jordan blocks of size at least × ,   is the 
number of Jordan blocks of size at least ×, and 

 is the number of Jordan 
blocks of size at least  × . Thus,  ≥  ≥ ⋯ ≥ 

. Refer to Theorem 10.1.2 
and 10.1.3, and consider the example below.
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Example 4 Find the Jordan Canonical Form of  .

   











    
    
   
    

 











    
    
   
    

 











    
    
   
    

   

Theorem  10.1.2
The number of dots in the first  rows of the dot diagram for  is 
equal to the dimension of solution space of      

 x    (i.e. the 
nullity of      

 ).

 nullity     
 = nullity     

  

   

Theorem  10.1.3
For ∈  , let  denote the number of dots in the  th row of the 
dot diagram of .  Then, the following are true.

(1)    rank     .
(2) If   ,   rank     

     rank    
 .

Proof  By Theorem 10.1.2,
   ⋯   nullity    

   rank   
  (provided  ≥ )

Also,    rank     and
               ⋯      ⋯    

              rank    
   rank    

   

             rank    
    rank    

     .
       (The number of dots in each row, , means the number of blocks of size 

at least  × )                                                             ■

 From Theorem 10.1.3, let’s see how the dot diagram for each  is completely 
determined by the matrix  .
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Solution  
                                                                           
A=matrix(4, 4, [2, -1, 0, 1, 0, 3, -1, 0, 0, 1, 1, 0, 0, -1, 0, 3])
print A.charpoly().factor()
print A.eigenvalues()
                                                                           
  (x - 3) * (x - 2)^3
  [3, 2, 2, 2]

The matrix   has characteristic polynomial det       , 
so   has two distinct eigenvalues  ,  . 

Here    has algebraic multiplicity 1, and     has algebraic 
multiplicity 3. Thus, the dot diagram for   has 1 dot 

•

and   has one ×  Jordan block. That is,   . As well, the dot 
diagram for   has 3 dots, and
                                                                           
E=identity_matrix(4)
print (A-2*E).rank()
print ((A-2*E)^2).rank()
                                                                           
2
1

    rank      rank










    
    
    
    

    ,

  rank    rank           .

Thus, the dot diagram for   is the following.

                    : ∙   ∙  (number of Jordan blocks: 2)
                    : ∙

  has one ×  Jordan block and one × Jordan block. That is,
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Hence, the Jordan Canonical form of   is

∴   



 









































                                    □

Sage  http://sage.skku.edu and http://mathlab.knou.ac.kr:8080/
                                                                           
A=matrix(4, 4, [2, -1, 0, 1, 0, 3, -1, 0, 0, 1, 1, 0, 0, -1, 0, 3])
J=A.jordan_form()   # Jordan Canonical Form
print J
                                                                          
[3|0 0|0]
[-+--+-]
[0|2 1|0]
[0|0 2|0]
[-+--+-]  
[0|0 0|2]                                                                ■

Example 5 Find the Jordan Canonical Form of  .

    











      

      
   
   

Solution

The matrix   has characteristic polynomial det           , 
so there are two distinct eigenvalues of   ,   와   , each with 
algebraic multiplicity 2.  For   , 
  

   rank        

Therefore, the dot diagram for   is the following.

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
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                      :  •    (Number of Jordan blocks: )
                      :  •

So,  


 


 

 
.

For   ,    rank        .   is 0(∵ The number of dots  
is    ). Therefore, the dot diagram for    is the following:

  :  • •  (Number of Jordan blocks = 2)

So,  


 


 

 

Thus, the Jordan Canonical Form of  is  











   
   
   
   

.             □

Sage  http://sage.skku.edu and http://mathlab.knou.ac.kr:8080/
                                                                           
A=matrix(4, 4, [2, -2, -2, -2, -4, 0, -2, -6, 2, 1, 3, 3, 2, 3, 3, 7])
J=A.jordan_form()   # Jordan Canonical Form
print J
                                                                          
[4 1|0|0]
[0 4|0|0]
[--+-+-]
[0 0|2|0]
[--+-+-]
[0 0|0|2]                                                               ■

[Remark] Jordan Canonical Form Learning Materials

Ÿ http://matrix.skku.ac.kr/2012-mobile/E-CLA/10-1.html 
Ÿ http://matrix.skku.ac.kr/2012-mobile/E-CLA/10-1-ex.html 

http://matrix.skku.ac.kr/JCF/index.htm

http://sage.skku.edu
http://mathlab.knou.ac.kr:8080
http://matrix.skku.ac.kr/2012-mobile/E-CLA/10-1.html
http://matrix.skku.ac.kr/2012-mobile/E-CLA/10-1-ex.html
http://matrix.skku.ac.kr/JCF/index.htm
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10.2  Reference video: http://www.youtube.com/watch?v=yJ7n0icjtNA  
 Practice site: http://matrix.skku.ac.kr/knou-knowls/cla-week-15-sec-10-2.html

              http://matrix.skku.ac.kr/sglee/03-Note/GeneralizedEV-f.pdf 

              http://matrix.skku.ac.kr/MT-04/chp8/3p.html  

Jordan Canonical Form and 

Generalized Eigenvectors

In Section 10.1, for any × matrix , we discussed the theory 
and method for finding a matrix  , called the Jordan Canonical 

form, such that      . In this section, we will examine a 
method for finding the matrix   in the above equation. This 
method utilizes the concept of generalized eigenvectors.

The following matrix was referred from the wiki
http://en.wikipedia.org/wiki/Jordan_normal_form.

  Let  











   
     

     
    

.

Consider the matrix  . The Jordan normal form is obtained by some similarity 
transformation      , i.e.    . 

Let   have column vectors p,    …  , then

     p  p  p  p   p  p  p  p 










   
   
   
   

 p  p  p  p  p  .

We see that
    p  

    p  

    p  

    p  p .

For      , we have p∈ Ker   , i.e. p is an eigenvector of   
corresponding to the eigenvalue . For   , multiplying both sides by      
gives      p      p . But     p   , so      p   . Thus, 

http://www.youtube.com/watch?v=yJ7n0icjtNA
http://matrix.skku.ac.kr/knou-knowls/cla-week-15-sec-10-2.html
http://matrix.skku.ac.kr/sglee/03-Note/GeneralizedEV-f.pdf
http://matrix.skku.ac.kr/MT-04/chp8/3p.html
http://en.wikipedia.org/wiki/Jordan_normal_form
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p∈ Ker     . Vectors like p  are called generalized eigenvectors of  . Thus, 
given an eigenvalue , its corresponding Jordan block gives rise to a Jordan chain. 
The generator, or lead vector (say, p ) of the chain is a generalized eigenvector 
such that      p   , where  is the size of the Jordan block. The vector 
p         p  is an eigenvector corresponding to . In general, p  is the 
preimage of p   under    . So the lead vector generates the chain via 
multiplication by    . Therefore, the statement that every square matrix  can 
be put in Jordan normal form is equivalent to the claim that there exists a basis 
consisting only of eigenvectors and generalized eigenvectors of  .

PS: More details about the Jordan Canonical Form can be found at
http://www.uio.no/studier/emner/matnat/math/MAT2440/v11/undervisningsmateriale/genvectors.pdf. 

http://www.uio.no/studier/emner/matnat/math/MAT2440/v11/undervisningsmateriale/genvectors.pdf
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10.3  Reference video: http://youtu.be/LxY6RcNTEE0,   http://youtu.be/LxY6RcNTEE0 

 Practice site: http://matrix.skku.ac.kr/knou-knowls/cla-week-15-sec-10-3.html 

Jordan Canonical Form and CAS

In practice, in order to find the Jordan Canonical Form of a 10×10 
matrix, you need to find the roots of a characteristic polynomial of 
degree 10 – the factorization and rigorous calculation of these 
roots is impossible.  Moreover, a 10×10 matrix requires us to 
calculate many exponents and coefficients. In order to calculate 
these coefficients, the Gaussian elimination and related 
computations can be performed by various computer programs – 
e.g. HLINPRAC, MATHEMATICA,  MATLAB, and the recently 
developed open-source program, Sage.  The use of software for 
computationally complex mathematics is necessary in an 
increasingly technological society.

The following links provide more information about the Jordan Canonical Form and 
tools that allow you to explicitly find the Jordan Canoncial Form for a given matrix 
without arduous calculations by hand.

1. Theory and tools : http://matrix.skku.ac.kr/JCF/index.htm   

2. Jordan Canonical Form; an algorithmic approach:
http://matrix.skku.ac.kr/JCF/JCF-algorithm.html

3. Jordan Canonical Form (step by step) tool:  
http://matrix.skku.ac.kr/JCF/JordanCanonicalForm-SKKU.html

4.CAS Tool : http://matrix.skku.ac.kr/2014-Album/MC-2.html   

"The man ignorant of mathematics will be increasingly 
limited in his grasp of the main forces of civilization." 
                          - John George Kemeny (1926 –1992) 

A Jewish-Hungarian American mathematician, computer scientist, and educator 
best known for co-developing the BASIC programming language in 1964 and 
pioneered the use of computers in college education. 

http://youtu.be/LxY6RcNTEE0
http://youtu.be/LxY6RcNTEE0
http://matrix.skku.ac.kr/knou-knowls/cla-week-15-sec-10-3.html
http://matrix.skku.ac.kr/JCF/index.htm
http://matrix.skku.ac.kr/JCF/JCF-algorithm.html
http://matrix.skku.ac.kr/JCF/JordanCanonicalForm-SKKU.html
http://matrix.skku.ac.kr/2014-Album/MC-2.html
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Chapter 10    Exercises

Ÿ http://matrix.skku.ac.kr/LA-Lab/index.htm 
Ÿ http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm 

Problem 1  Let   be a × matrix with the only one eigenvalue  with algebraic 
multiplicity of 5. Find all possible types of  Jordan Canonical forms of   
when the number of linearly independent eigenvectors corresponding  is 2. 

Problem 2  For the given Jordan Canonical form  , calculate the following:

 











    
    
    
    
    

 

(1)    

(2)     

(3)      

(4)     

[Problem 3–8]  Find the Jordan Canonical Form of the given matrix.

Problem 3  











    
    
    
    
    

  

Solution   Sage :  _________________________________________
A=matrix(QQ,5,5,[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5])
J=A.jordan_form()
print J

                __________________________________________

http://matrix.skku.ac.kr/LA-Lab/index.htm
http://matrix.skku.ac.kr/knou-knowls/cla-sage-reference.htm
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[25| 0| 0| 0| 0]
[ 0| 0| 0| 0| 0]
[ 0| 0| 0| 0| 0]
[ 0| 0| 0| 0| 0]
[ 0| 0| 0| 0| 0]                   ■

Problem 4  











    
    
    
    
     

Problem 5  








    

    
   

Problem 6  










    

     
     
     

Problem 7  











     
    
     
    
    

Problem 8  










    

    
     
     

Solution  Sage :  _________________________________________
A=matrix(QQ,[[2,-4,2,2],[-2,0,1,3],[-2,-2,3,3],[-2,-6,3,7]])
print A.eigenvalues()
E=identity_matrix(4);
print (A-2*E).rank(); print (A-4*E).rank();print ((A-4*E)^2).rank()

                __________________________________________
[4, 4, 2, 2]
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2
3
2

rank(  )=3 =>    rank  =  . 
    　 ∙ (Number of Jordan block : 1)
    　 ∙

rank     =>    rank      . 
    ∙ ∙ (Number of Jordan block :　2)

            ∴  











   
   
   
   

  ■

Problem 9   (⊕ means the matrix direct sum of  matrices constructs a block 
diagonal matrix, http://mathworld.wolfram.com/MatrixDirectSum.html, from a set of 
square matrices.) 

 











          
          
          
          
           
            
            
           
          
           
           

  = 










   
   
   
   

⊕  











       

        
        
       
      
       
       

Problem 10        











    

     
     
     

⊕  











     
    
     
    
    

⊕  










    

    
     
     

⊕

http://mathworld.wolfram.com/MatrixDirectSum.html
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  - Quotes by Great Mathematicians:
        http://prezi.com/z0hgrw8a6wql/define-math/ 

ILAS 2014 Official Photo :  http://matrix.skku.ac.kr/2014-Album/ILAS-2014/
ILAS 2014 Movie A – Registration and Presentations : http://youtu.be/asJfRFYWPrk
ILAS 2014 Movie B – Tour        :  http://youtu.be/bidJNagmRXQ
ILAS 2014 Movie C – Banquet        :  http://youtu.be/10fDqWA-vVA
ILAS 2014 Movie D – Group Photo   :  http://youtu.be/6IlS8U6i_8E
ILAS 2014 Movie E – Conference Preparations   :  http://youtu.be/UMwLCtSGByI

ICM 2014, COEX, Seoul, Fields Medalists: 
                        http://matrix.skku.ac.kr/2014-Album/2014-ICM-SGLee/  
                        https://www.facebook.com/SEOULICM2014
                        http://www.icm2014.org/en/vod/videos
                        http://www.icm2014.org/en/vod/public

           

http://prezi.com/z0hgrw8a6wql/define-math
http://matrix.skku.ac.kr/2014-Album/ILAS-2014
http://youtu.be/asJfRFYWPrk
http://youtu.be/bidJNagmRXQ
http://youtu.be/10fDqWA-vVA
http://youtu.be/6IlS8U6i_8E
http://youtu.be/UMwLCtSGByI
http://matrix.skku.ac.kr/2014-Album/2014-ICM-SGLee
https://www.facebook.com/SEOULICM2014
http://www.icm2014.org/en/vod/videos
http://www.icm2014.org/en/vod/public
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Appendix 

http://matrix.skku.ac.kr/Cal-Book/Appnd/index.htm
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<Sage Linear Algebra partial commands list>  

var('a,b,c,d')              # define variables

eq1=3*a+3*b==12       # define equation1

eq2=5*a+2*b==13       # define equation2 

solve([eq1, eq2], a,b)     # solve system of  

                          equations 

A=matrix(CDF, 3, 3, [3, 0, 0, 0, 0, 2, 0, 3, 4]); 

                        # define matrix

A.echelon_form()         # RREF

A.inverse()               # inverse matrix

A.det()                  # determinant

A.adjoint()               # adjoint matrix

A.eigenvalues()           # eigenvalues

A.eigenvectors_right()     # eigenvectors

A.charpoly()           # characteristic equation 

P,L,U=A.LU()               # LU decomposition 

(P: Permutation matrix / L,U: triangle matrix)

vector([3, 1, 2])            # define vector

var('x, y')                  # define variables
plot3d(y^2+1-x^3-x, (x, -pi, pi), (y, -pi, pi)) 

                          # 3D Plot

implicit_plot3d(n.inner_product(p_0-p)==0, (x, 

-10, 10 , (y, -10, 10), (z, -10, 10)) 

                        # 3D Hyperplane Plot

var('t')  # define variable (parametric equations)

x=2+2*t 

y=-3*t-2

parametric_plot((x,y), (t, -10, 10), rgbcolor='red')  

                           # line Plot

Sample Exam 

 Reference video: http://youtu.be/CLxjkZuNJXw  

 Practice site:

         http://matrix.skku.ac.kr/CLA-Exams-Sol.pdf, 

               http://matrix.skku.ac.kr/2015-album/2015-LA-S-Exam-All-Sol.pdf 

    http://matrix.skku.ac.kr/2012-album/2012-LA-Lectures.htm  

* Provides basic commands if you use Sage in your test. 

I. (3pt x 6= 18pt) True(T) or False(F). Let ∈×  and u v ∈   .
1. (   ) Every square matrix can be expressed as products of elementary matrices. 

2. (   ) Let × matrix  has all integer components. If the determinant of  is 1, then the 

components of   are all integers.  

3. (   ) Let  ∈, then det  det

4. (   ) proj uv u⋅ u
v⋅ u u                                                

5. (   ) One can compute the solution of a system of linear equations with  unknowns and  equations 

by Cramer’s rule.

6. (   ) × real matrix  satisfies trdet  .

II. (3pt x 4 = 12pt) State or Define  
1. Choose 4 items from the list given in the box and describe them clearly and concisely.  

http://youtu.be/CLxjkZuNJXw
http://matrix.skku.ac.kr/CLA-Exams-Sol.pdf
http://matrix.skku.ac.kr/2015-album/2015-LA-S-Exam-All-Sol.pdf
http://matrix.skku.ac.kr/2012-album/2012-LA-Lectures.htm
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 normal vector of a plane  ,  linearly independent and linearly dependent, condition for subspace, 

Cramer's Rule, eigenvalue, eigenvector, linear transformations,  orthogonal matrix, for linear 

transformation’s    →  range, surjective or onto, injective or 1-1, isomorphism

[Subspace] A nonempty subset   of    satisfying the following two properties, 

            w w ∈ 

w ∈ 
    

is called a subspace of   .   (where, w w w ∈, ∈)
...  

[Standard Matrix] For a linear transformation,    →  the range is defined as

                       Im  v∈  v∈  ⊂  .

If    →  is a linear transformation and A=[T] is the standard matrix of  , then for 

x∈  , x  x , ∀ x∈R n where   e   e  ⋯  e   .    ...

 

III. (3pt x 10 = 30pt) Find or Explain:
... 

  

2.   Find the equation of a plane passing through a point      and generated by two 
vectors a    and b    in a vector equation form.  

Ans    x  p  a  b  ∈  

                       .  ■

...

5.  Suppose you got a job in a research lab and your boss asked you to find the eigenvalues, the 

eigenvectors, and the characteristic polynomial of a matrix 











   
   
   
   

. Explain how to find them 

with a step by step description. You may use Sage. 

Sol
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 1) Step 1: Open the webpage http://math1.skku.ac.kr .

 2) Step 2: Log in to the webpage with ID= skku, PW = ***  .

 3) Step 3: Press the button of “New Worksheet”  

 4) Step 4: In the first cell, define matrix   in CDF format.

                A=matrix(CDF,4,4,[4,1,0,2,0,-1,2,0,0,0,1,0,0,4,0,3])    

 5) Step 5: In the second cell, enter the command to find eigenvalues 

                A.eigenvalues() and execute. 

 6) Step 6: In the third cell, enter the command to find eigenvectors   

                A.eigenvectors_right() and execute.  

 7) Step 7: In the fourth cell, enter the command to find characteristic polynomial    

                A.charpoly() and execute. 

  

[4.0, 3.0, -1.0, 1.0]

[(4.0, [(1.0, 0, 0, 0)], 1), (3.0, [(0.894427191, 0, 0, -0.4472135955)], 1), (-1.0, 

[(0.140028008403, 0.700140042014, 0, -0.700140042014)], 1),

(1.0, [(-0.377964473009, -0.377964473009, -0.377964473009, 0.755928946018)], 1)]

x^4 - 7.0*x^3 + 11.0*x^2 + 7.0*x – 12.0             (Online Sage solution)        ■

.....

8.  For a given matrix 








  

  
  

, describe step by step process to find the inverse matrix by using 

the Sage.  

Sol
     

 1) Step 1: (example) Open the webpage http://math1.skku.ac.kr .

 2) Step 2: Log in to the webpage with ID= skku, PW = ***  .

 3) Step 3: Press the button of “New Worksheet”  

 4) Step 4: In the first cell, define matrix   in CC format.

            A=matrix(CC, 3, 3, [1,0,1,-0,3,0,1,0,2])           

 5) Step 5: In the second cell, enter the command A.inverse() to find the inverse.

  

[ 2.00   0     -1.0]

[ 0     0.33     0]

[-1.00   0     1.00]     ■

...

9.  ...

http://math1.skku.ac.kr
http://math1.skku.ac.kr


- 417 -

IV. (5pt x 5 = 25pt) Find or Explain:
1. Let a linear transformation     →    transforms any vector x ∈   to a symmetric 

point to the line which passing through the origin with slope  . Find the transformation matrix 

  e   e   with the aid of following pictures.

            

         Picture: The image of the standard basis by a symmetric transformation to the line  
                  with slope  .

(Sol)   e   e  










cos cos

 

sin  sin

 




 


cos sinsin  cos . ■

2.  Linear transformation (Linear operator): Let's define    →    as a projective transformation, 

which transforms any vector x  in    to projection on a line which passes through the origin 

and has an angle   with -axis. For the given transformation  , let's define  as a 

corresponding standard matrix. As shown by the right hand side picture, x x 

x x 

<same direction with half length>. Now by using the matrix representation of symmetric 

transformation 


 


cos sinsin  cos , find the standard matrix for  . 

               

Picture:   Projective transformation to the    The relationship between symmetric transformation
          line with slope                   and projective transformation to the line with slope    

(Sol)  xx 

xx => x 


x 

 x 

 x 


x 


  x  
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  =>    

  












 cos  

 sin

 sin 


 cos 





 


cos sincos

sincos sin
  ■

3.  For invertible matrices  and , explain why adj  adj ⋅ adj.

...
4.  For a degree  square matrix , explain why its eigenspace is a subspace of  .

Ans  For a given square matrix  , let  be the eigenspace corresponding to an eigenvalue . 

      x∈  x x⊆   , ∈, ≠ ∅
         ∀ x y∈,  x y∈R  and x∈R .
  1) [Show the space is closed under the addition, that is, show x y∈]       (2 pt)

    (Proof) x x y y
x y  xy xy x y

     ∴ x y∈

 2) [Show the space is closed under the scalar multiplication, that is, show x∈]  (2 pt)

      (Proof) x  x x x  
                                         ∴ x∈

 ∴  is a subspace of    as it fulfilled the above two conditions.  (1 pt)    ■

5. For a linear transformation    → , explain why Im  is a subspace of   .

     (Proof) .......            ■

[Math Genealogy Tree] 
http://genealogy.math.ndsu.nodak.edu

http://genealogy.math.ndsu.nodak.edu/id.ph
p?id=45061 

http://genealogy.math.ndsu.nodak.edu
http://genealogy.math.ndsu.nodak.edu/id.ph
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   This book was translated by the following authors 

from a free Big Book in http://www.bigbook.or.kr/ which is an interactive smart 
Linear Algebra textbook for everyone.
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